Broadband fiber optical parametric amplifiers

Optics Letters (Impact Factor: 3.18). 04/1996; 21(8):573-5. DOI: 10.1364/OL.21.000573
Source: PubMed

ABSTRACT The bandwidth of a single-pump fiber optical parametric amplifier is governed by the even orders of fiber dispersion at the pump wavelength. The amplifier can exhibit gain over a wide wavelength range when operated near the fiber's zero-dispersion wavelength. It can also be used for broadband wavelength conversion,with gain. We have experimentally obtained gain of 10-18 dB as the signal wavelength was tuned over a 35-nm bandwidth near 1560 nm.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed.
    Laser & Photonics Review 09/2014; 9(1):50-74. DOI:10.1002/lpor.201400087 · 7.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Germanium oxide (GeO2) and tellurium oxide (TeO2) based glasses are classed as the heavy metal oxide glasses, with phonon energies ranging between 740 cm−1 and 880 cm−1. These two types of glasses exhibit unique combinations of optical and spectroscopic properties, together with their attractive environmental resistance and mechanical properties. Engineering such a combination of structural, optical and spectroscopic properties is only feasible as a result of structural variability in these two types of glasses, since more than one structural units (TeO4 bi-pyramid, TeO3 trigonal pyramid, and TeO3+δ polyhedra) in tellurite and (GeO4 tetrahedron, GeO3 octahedron) in GeO2 based glasses may exist, depending on composition. The presence of multiple structural moities creates a range of dipole environments which is ideal for engineering broad spectral bandwidth rare-earth ion doped photonic device materials, suitable for laser and amplifier devices. Tellurite glasses were discovered in 1952, but remained virtually unknown to materials and device engineers until 1994 when unusual spectroscopic, nonlinear and dispersion properties of alkali and alkaline earth modified tellurite glasses and fibres were reported. Detailed spectroscopic analysis of Pr3+, Nd3+, Er3+, and Tm3+ doped tellurite glasses revealed its potential for laser and amplifier devices for optical communication wavelengths. This review summarises the thermal and viscosity properties of tellurite and germanate glasses for fibre fabrication and compares the linear loss for near and mid-IR device engineering. The aspects of glass preform fabrication for fibre engineering is discussed by emphasising the raw materials processing with casting of preforms and fibre fabrication. The spectroscopic properties of tellurite and germanate glasses have been analysed with special emphasis on oscillator strength and radiative rate characteristics for visible, near IR and mid-IR emission. The review also compares the latest results in the engineering of lasers and amplifiers, based on fibres for optical communication and mid-IR. The achievements in the areas of near-IR waveguide and mid-IR bulk glass, fibre, and waveguide lasers are discussed. The latest landmark results in mode-locked 2 μm bulk glass lasers sets the precedence for engineering nonlinear and other laser devices for accessing the inaccessible parts of the mid-IR spectrum and discovering new applications for the future.
    Progress in Materials Science 11/2012; 57(8):1426-1491. DOI:10.1016/j.pmatsci.2012.04.003 · 25.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photonics properties of glasses can be designed by controlling their complex Kerr nonlinearity. Chemical structure and bonding properties are considered as the origin of glass third-order susceptibilities. Investigation of the role of orbital hybridization on the glass electronic polarizability and third-order susceptibility is carried out. Thus, series of heavy metal lead borate glass of the composition 0.25B 2 O 3 –0.75PbO is prepared by melt quenching technique. Orbital hybridization, as a linear combination for valence electron wave functions of p-and d-block elements, is obtained through structural co-substitution of very small contents of Cr 2 O 3 and/or SeO 2 , by B 2 O 3 . It get succeed to tune the glass nonlinear optical characteristics such as; the complex components of third-order susceptibility. Scaling roles describing the relations between oxide ion polarizability and index of refraction and between imaginary part of third-order susceptibility and band gap energy are proposed. The glasses exhibit zero-dispersion wavelength at 1.55 µm band which is needed for telecommunication devices. The polarizability approach is applied to analyze and explain the obtained glass properties.

Full-text (2 Sources)

Available from
May 26, 2014