How to control miRNA maturation?

Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
RNA biology (Impact Factor: 5.38). 11/2009; 6(5):536-40.
Source: PubMed

ABSTRACT In this point of view we discuss the role of co-activators and co-repressors of miRNA precursors maturation, the possibility that their functions are post translationally regulated by different signaling pathways, and their potential role in the miRNA-dependent control of cell proliferation and differentiation.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs, miRs) are short approximately 22-nucleotide noncoding RNAs that bind to messenger RNA transcripts and in doing so modulate cognate gene expression. In eukaryotes, miRNAs act primarily by causing translational repression although they may also act to destabilize RNA transcripts. During the past few years, a number of studies have demonstrated that miR expression changes as a result of cardiac hypertrophy or heart failure. Additionally, cell-based and transgenic mouse studies have demonstrated that individual miRs can affect a number of aspects of cardiac biology including developmental processes, stem cell differentiation, progression of hypertrophy and failure, ion channel function, as well as angiogenesis, rates of apoptosis, and fibroblast proliferation. In this review, we will summarize several of the miRs known to change in expression in association with heart failure and outline details of what is known about their putative targets. In addition, we will review several aspects of regulation of miR expression that have not been addressed in a cardiovascular context. Finally, as is common to all new and rapidly moving fields, we will highlight some of the gaps and inconsistencies related to miR expression and cardiac phenotypes, particularly those associated with heart failure.
    Journal of cardiovascular pharmacology 11/2010; 56(5):444-53. DOI:10.1097/FJC.0b013e3181f605b6 · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal myogenesis is orchestrated by distinct regulatory signaling pathways, including PI3K/AKT, that ultimately control muscle gene expression. Recently discovered myogenic micro-RNAs (miRNAs) are deeply implicated in muscle biology. Processing of miRNAs from their primary transcripts is emerging as a major step in the control of miRNA levels and might be well suited to be regulated by extracellular signals. Here we report that the RNA binding protein KSRP is required for the correct processing of primary myogenic miRNAs upon PI3K/AKT activation in myoblasts C2C12 and in the course of injury-induced muscle regeneration, as revealed by Ksrp knock-out mice analysis. PI3K/AKT activation regulates in opposite ways two distinct KSRP functions inhibiting its ability to promote decay of myogenin mRNA and activating its ability to favor maturation of myogenic miRNAs. This dynamic regulatory switch eventually contributes to the activation of the myogenic program.
    Cell death and differentiation 09/2011; 19(3):478-87. DOI:10.1038/cdd.2011.117 · 8.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small non-protein-coding RNAs. miRNA genes need several biogenesis steps to form function miRNAs. However, the precise mechanism and biology involved in the mature miRNA molecules are not clearly investigated. In this study, we conducted in-depth analyses to examine the arm selection and isomiRs using NGS platform. We sequenced small RNAs from one pair of normal and gastric tumor tissues with Solexa platform. By analyzing the NGS data, we quantified the expression profiles of miRNAs and isomiRs in gastric tissues. Then, we measured the expression ratios of 5p arm to 3p arm of the same pre-miRNAs. And, we used Kolmogorov-Smirnov (KS) test to examine isomiR pattern difference between tissues. Our result showed the 5p arm and 3p arm miRNA derived from the same pre-miRNAs have different tissue expression preference, one preferred normal tissue and the other preferred tumor tissue, which strongly implied that there could be other mechanism controlling mature miRNA selection in addition to the known hydrogen-bonding selection rule. Furthermore, by using the KS test, we demonstrated that some isomiR types preferentially occur in normal gastric tissue but other types prefer tumor gastric tissue. Arm selections and isomiR patterns are significantly varied in human cancers by using deep sequencing NGS data. Our results provided a novel research topic in miRNA regulation study. With advanced bioinformatics and molecular biology studies, more robust conclusions and insight into miRNA regulation can be achieved in the near future.
    BMC Genomics 01/2012; 13 Suppl 1:S13. DOI:10.1186/1471-2164-13-S1-S13 · 4.04 Impact Factor