Comparison of tree-child phylogenetic networks.

Department of Mathematics and Computer Science, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM (Impact Factor: 2.25). 01/2010; 6(4):552-69. DOI: 10.1109/TCBB.2007.70270
Source: IEEE Xplore

ABSTRACT Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of nontreelike evolutionary events, like recombination, hybridization, or lateral gene transfer. While much progress has been made to find practical algorithms for reconstructing a phylogenetic network from a set of sequences, all attempts to endorse a class of phylogenetic networks (strictly extending the class of phylogenetic trees) with a well-founded distance measure have, to the best of our knowledge and with the only exception of the bipartition distance on regular networks, failed so far. In this paper, we present and study a new meaningful class of phylogenetic networks, called tree-child phylogenetic networks, and we provide an injective representation of these networks as multisets of vectors of natural numbers, their path multiplicity vectors. We then use this representation to define a distance on this class that extends the well-known Robinson-Foulds distance for phylogenetic trees and to give an alignment method for pairs of networks in this class. Simple polynomial algorithms for reconstructing a tree-child phylogenetic network from its path multiplicity vectors, for computing the distance between two tree-child phylogenetic networks and for aligning a pair of tree-child phylogenetic networks, are provided. They have been implemented as a Perl package and a Java applet, which can be found at

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trees are commonly utilized to describe the evolutionary history of a collection of biological species, in which case the trees are called phylogenetic trees. Often these are reconstructed from data by making use of distances between extant species corresponding to the leaves of the tree. Because of increased recognition of the possibility of hybridization events, more attention is being given to the use of phylogenetic networks that are not necessarily trees. This paper describes the reconstruction of certain such networks from the tree-average distances between the leaves. For a certain class of phylogenetic networks, a polynomial-time method is presented to reconstruct the network from the tree-average distances. The method is proved to work if there is a single reticulation cycle.
    Bulletin of Mathematical Biology 07/2013; · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted trees on three species. However, although triplets determine or encode rooted phylogenetic trees, they do not in general encode rooted phylogenetic networks, which is a potential issue for any such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natural extension of rooted triplets to networks. In particular, they showed that [Formula: see text] phylogenetic networks are encoded by their trinets, and also conjectured that all "recoverable" rooted phylogenetic networks are encoded by their trinets. Here we prove that recoverable binary level-2 networks and binary tree-child networks are also encoded by their trinets. To do this we prove two decomposition theorems based on trinets which hold for all recoverable binary rooted phylogenetic networks. Our results provide some additional evidence in support of the conjecture that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new approaches to construct phylogenetic networks from trinets.
    Journal of Mathematical Biology 05/2013; · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we have shown that calculating the minimum-temporal-hybridization number for a set [Formula: see text] of rooted binary phylogenetic trees is NP-hard and have characterized this minimum number when [Formula: see text] consists of exactly two trees. In this paper, we give the first characterization of the problem for [Formula: see text] being arbitrarily large. The characterization is in terms of cherries and the existence of a particular type of sequence. Furthermore, in an online appendix to the paper, we show that this new characterization can be used to show that computing the minimum-temporal hybridization number for two trees is fixed-parameter tractable.
    Bulletin of Mathematical Biology 08/2013; · 2.02 Impact Factor

Full-text (3 Sources)

Available from
May 26, 2014