Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing

Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA.
Science of The Total Environment (Impact Factor: 4.1). 10/2009; 408(2):439-43. DOI: 10.1016/j.scitotenv.2009.10.008
Source: PubMed

ABSTRACT The growth of the nanotechnology industry and subsequent proliferation of nanoparticle types present the need to rapidly assess nanoparticle toxicity. We present a novel, simple and cost-effective nebulizer-based method to deliver nanoparticles to the Drosophila melanogaster respiratory system, for the purpose of toxicity testing. FluoSpheres, silver, and CdSe/ZnS nanoparticles of different sizes were effectively aerosolized, showing the system is capable of functioning with a wide range of nanoparticle types and sizes. Red fluorescent CdSe/ZnS nanoparticles were successfully delivered to the fly respiratory system, as visualized by fluorescent microscopy. Silver coated and uncoated nanoparticles were delivered in a toxicity test, and induced Hsp70 expression in flies, confirming the utility of this model in toxicity testing. This is the first method developed capable of such delivery, provides the advantage of the Drosophila health model, and can serve as a link between tissue culture and more expensive mammalian models in a tiered toxicity testing strategy.

Download full-text


Available from: Maqusood Ahamed, Oct 29, 2014
  • Source
    • "ENMs have to be also addressed (Yokel and MacPhail 2011), and in particular reports about their induced pulmonary effects causing inflammatory lung injury have been published in the last years (Nemmar et al. 2003; Geiser et al. 2003). It has been shown that, due to their sizes, smaller than cells and cellular organelles, nanoparticles can move freely into the environment and then be inhaled by the human body, being capable to penetrate the biological structures, disrupting their normal function, leading to human exposure, which may result in a serious health risk (Buzea et al. 2007), as tissue inflammation (Baroli et al. 2007) or respiratory health effects (Simeonova and Erdely 2009; Posgai et al. 2009). There are other biological organs which are affected too due to the ability of nanomaterials to move through the body in the blood stream and to be assimilated by organs and tissues including the brain, heart, liver, kidneys, spleen, bone marrow, and nervous system (Lewinski et al. 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The optoelectronic properties of zinc oxide nanoparticles (ZnO-NPs) have determined development of novel applications in catalysis, paints, wave filters, UV detectors, transparent conductive films, solar cells, or sunscreens. While the immediate advantages of using nano-ZnO in glass panel coatings and filter screens for lamps, as protecting products against bleaching, have been demonstrated, the potential environmental effect of the engineered NPs and the associated products was not fully estimated; this issue being of utmost importance, as these materials will be supplied to the market in quantities of tons per year, equating to thousands of square meters. In this study, ZnO-NPs with commercial name Zincox TM have been subjected to a comprehensive characterization, relevant for hazard assessment, using complementary physico-chemical methods. There-fore, the morphological investigations have been corroborated with XRD pattern analyses and UV– Vis absorption related properties resulting an excellent correlation between the geometrical sizes revealed by microscopy (8.0–9.0 nm), and, respectively, the crys-tallite size (8.2–9.5 nm) and optical size (7.8 nm) calculated from the last two techniques' data. Fur-thermore, the hydrodynamic diameter of ZnO-NPs and stability of aqueous dispersions with different concentration of nanoparticles have been analyzed as function of significant solution parameters, like con-centration, pH and solution ionic strength. The results suggest that solution chemistry exerts a strong influ-ence on ZnO dissolution stability, the complete set of analyses providing useful information toward better control of dosage during biotoxicological tests.
  • Source
    • "e material aggregation state ( Liu et al . 2009 ) . Larval ingestion leads to systemic uptake and tissue sequestration while adult treatment leads to whole - body coverage , loss of locomotor function and mortality . In addition , it has been demonstrated the usefulness of Drosophila to deliver nanoparticles via the Drosophila respiratory system ( Posgai et al . 2009 ) . In this system red fluorescent CdSe / znS nanoparticles were successfully delivered to the fly respiratory system , as visualized by fluorescent microscopy . In addition , silver coated and uncoated nanoparticles delivered by the respiratory route induced Hsp70 expression in flies , confirming the utility of this model . In a more r"
    [Show abstract] [Hide abstract]
    ABSTRACT: Health risk assessment of nanomaterials is an emergent field, genotoxicity being an important endpoint to be tested. Since in vivo studies offer many advantages, such as the study of the bioavailability of nanomaterials to sensitive target cells, we propose Drosophila as a useful model for the study of the toxic and genotoxic risks associated with nanoparticle exposure. In this work we have carried out a genotoxic evaluation of silver nanoparticles in Drosophila by using the wing somatic mutation and recombination test. This test is based on the principle that loss of heterozygosis and the corresponding expression of the suitable recessive markers, multiple wing hairs and flare-3, can lead to the formation of mutant clones in larval cells, which are expressed as mutant spots on the wings of adult flies. Silver nanoparticles were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. The results showed that small but significant increases in the frequency of total spots were observed, thus indicating that silver nanoparticles were able to induce genotoxic activity in the wing spot assay of D. melanogaster, mainly via the induction of somatic recombination. These positive results obtained with silver nanoparticles contrast with the negative findings obtained when silver nitrate was tested.
    Nanotoxicology 11/2010; 5(3):417-24. DOI:10.3109/17435390.2010.529176 · 7.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanotechnology is rapidly growing with nanoparticles produced and utilized in a wide range of commercial products throughout the world. For example, silver nanoparticles (Ag NP) are used in electronics, bio-sensing, clothing, food industry, paints, sunscreens, cosmetics and medical devices. These broad applications, however, increase human exposure and thus the potential risk related to their short- and long-term toxicity. A large number of in vitro studies indicate that Ag NPs are toxic to the mammalian cells derived from skin, liver, lung, brain, vascular system and reproductive organs. Interestingly, some studies have shown that this particle has the potential to induce genes associated with cell cycle progression, DNA damage and apoptosis in human cells at non-cytotoxic doses. Furthermore, in vivo bio-distribution and toxicity studies in rats and mice have demonstrated that Ag NP administered by inhalation, ingestion or intra-peritoneal injection were subsequently detected in blood and caused toxicity in several organs including brain. Moreover, Ag NP exerted developmental and structural malformations in non-mammalian model organisms typically used to elucidate human disease and developmental abnormalities. The mechanisms for Ag NP induced toxicity include the effects of this particle on cell membranes, mitochondria and genetic material. This paper summarizes and critically assesses the current studies focusing on adverse effects of Ag NPs on human health.
    Clinica chimica acta; international journal of clinical chemistry 12/2010; 411(23-24):1841-8. DOI:10.1016/j.cca.2010.08.016 · 2.76 Impact Factor
Show more