SLAM-enriched hematopoietic stem cells maintain long-term repopulating capacity after lentiviral transduction using an abbreviated protocol

Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA.
Gene therapy (Impact Factor: 3.1). 10/2009; 17(3):412-8. DOI: 10.1038/gt.2009.138
Source: PubMed


Gene transfer to long-term repopulating hematopoietic stem cells (HSCs) using integrating viral vectors is an important goal in gene therapy. The SLAM (signaling lymphocyte activation molecule)-family receptors have recently been used for the isolation of highly enriched murine HSCs. This HSC enrichment protocol is relatively simple, and results in an HSC population with comparable repopulating capacity to c-kit(+)lin(-)Sca-1(+) (KSL) HSCs. The capacity to withstand genetic manipulation and, most importantly, to maintain long-term repopulating capacity of SLAM-enriched HSC populations has not been reported. In this study, SLAM-enriched HSCs were assessed for transduction efficiency and in vivo long-term repopulating capacity after lentiviral transduction using an abbreviated transduction protocol and KSL-enriched HSCs as a reference population. SLAM- and KSL-enriched HSCs were efficiently transduced by lentiviral vector using a simple protocol that involves minimal in vitro manipulation and no pre-stimulation. SLAM-HSCs are at least equal to KSL-HSCs with respect to efficiency of transduction and maintenance of long-term repopulating capacity. Although there was a reduction in repopulating capacity related to enrichment and culture manipulations relative to freshly isolated bone marrow (BM) cells, no detrimental effects were identified on long-term competitive capacity related to transduction, as transduced cells maintained stable levels of chimerism in competition with non-transduced cells and freshly isolated BM cells. These results support the SLAM-HSC enrichment protocol as a simple and efficient method for HSC enrichment for gene transfer studies.

32 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transduction with recombinant HIV-1 derived lentivirus vectors is a multi-step process initiated by surface attachment and subsequent receptor-directed uptake into the target cell. We previously reported the retention of vesicular stomatitis virus G protein pseudotyped particles on murine progenitor cells and their delayed cell-cell transfer. To examine the underlying mechanism in more detail, we used a combination of approaches focused on investigating the role of receptor-independent factors in modulating attachment. The investigation of synchronized transduction reveals cell-type specific rates of vector particle clearance with substantial delays during particle entry into murine hematopoietic progenitor cells. The observed uptake kinetics from the surface of the 1 degrees cell correlate inversely with the magnitude of transfer to 2 degrees targets, corresponding with our initial observation of preferential cell-cell transfer in the context of brief vector exposures. We further demonstrate that vector particle entry into cells is associated with the cell-type specific abundance of extracellular matrix fibronectin. Residual particle-extracellular fibronectin matrix binding and 2 degrees transfer can be competitively disrupted by heparin exposure without affecting murine progenitor homing and repopulation. Although cellular attachment factors, including fibronectin, aid gene transfer by colocalizing particles to cells and disfavoring early dissociation from targets, they also appear to stabilize particles on the cell surface. The present study highlights the inadvertent consequences for cell entry and cell-cell transfer.
    The Journal of Gene Medicine 05/2010; 12(5):463-76. DOI:10.1002/jgm.1458 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SLAM family recently has been reported to show an important biological role in lymphocyte development and immunological function, and it is efficient to highly purify hematopoietic stem cells using a simple combination of SLAM family members. To elucidate the presence of this family on acute lymphoblastic leukemia (ALL), as well as its relationship with the leukemia-initiating potential, we analyzed the expression pattern of this family members on human ALL progenitor cells, combined with serial xenotransplantation assay. Expression analysis was carried out by flow cytometry. We combined the expression pattern of human CD(150), CD(244) and CD(48) with serial xenotransplantation of B-ALL progenitor cells to indicate their relationship. CD(48) and CD(244) were expressed on most B-ALL progenitor cells, the percentage being (93.08 ± 6.46)% and (63.37 ± 29.31)%, respectively. Interestingly, the proportion of CD(150)(+) cells declined obviously in engrafted cases ((24.94 ± 7.32)%) compared with non-engrafted cases ((77.54 ± 5.93)%, P < 0.01), which indicated that only blast cells with low percentage of CD(150)(+) population were able to reconstitute leukemia into primary, secondary and tertiary NOD/SCID mice. SLAM family members are present on B-ALL progenitor cells and the leukemia-initiating potential of leukemic blasts is correlated negatively with the proportion of CD(150)(+) cells, the percentage of which can serve as a useful predictor for engraftment success of B-ALL to immune deficient mice.
    Chinese medical journal 10/2011; 124(19):3074-9. DOI:10.3760/cma.j.issn.0366-6999.2011.19.023 · 1.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal stem cell therapy has broad potential for therapeutic application. "Stem cells" of interest include multipotent adult-derived stem cells, cord blood, amniotic fluid, or fetal stem cells, and embryonic or induced pluripotent stem cells. Potential manipulations of stem cells prior to their administration may include harvest, processing, enrichment, expansion, and genetic transduction. A complete description of the methodology related to all of the above is well beyond the scope of this chapter. In the interest of practical application and proven efficacy, we limit our description to adult-derived hematopoietic stem cells (HSCs) and their application to in utero transplantation with or without HSC-targeted gene transfer.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 891:169-81. DOI:10.1007/978-1-61779-873-3_8 · 1.29 Impact Factor