AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity.

GlaxoSmithKline Biologicals, Rixensart, Belgium.
The Journal of Immunology (Impact Factor: 5.36). 11/2009; 183(10):6186-97. DOI: 10.4049/jimmunol.0901474
Source: PubMed

ABSTRACT Adjuvant System 04 (AS04) combines the TLR4 agonist MPL (3-O-desacyl-4'-monophosphoryl lipid A) and aluminum salt. It is a new generation TLR-based adjuvant licensed for use in human vaccines. One of these vaccines, the human papillomavirus (HPV) vaccine Cervarix, is used in this study to elucidate the mechanism of action of AS04 in human cells and in mice. The adjuvant activity of AS04 was found to be strictly dependent on AS04 and the HPV Ags being injected at the same i.m. site within 24 h of each other. During this period, AS04 transiently induced local NF-kappaB activity and cytokine production. This led to an increased number of activated Ag-loaded dendritic cells and monocytes in the lymph node draining the injection site, which further increased the activation of Ag-specific T cells. AS04 was also found to directly stimulate those APCs in vitro but not directly stimulate CD4(+) T or B lymphocytes. These AS04-induced innate responses were primarily due to MPL. Aluminum salt appeared not to synergize with or inhibit MPL, but rather it prolonged the cytokine responses to MPL at the injection site. Altogether these results support a model in which the addition of MPL to aluminum salt enhances the vaccine response by rapidly triggering a local cytokine response leading to an optimal activation of APCs. The transient and confined nature of these responses provides further supporting evidence for the favorable safety profile of AS04 adjuvanted vaccines.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that monocytes and macrophages not only present antigens to effector T cells and stimulate and shape T cell-mediated immune responses, but they also prime naïve T cells, thus initiating adaptive immune responses. Phosphatidylinositol 3-kinase functions at an early phase of toll-like receptor signaling pathways, modulates the magnitude of the primary immune responses, and is involved in the reorganization of the actin cytoskeleton during macropinocytic and phagocytic antigen uptakes, important early steps in triggering adaptive immune responses. We assessed by flow cytometry the endocytic capacities of bovine monocytes by using endocytic tracers and Salmonella transformed with a green fluorescence plasmid GFP to evaluate macropinocytosis, mannose receptor-mediated endocytosis, and phagocytosis in bovine professional antigen presenting cells, respectively. Our data reveal that wortmannin, an inhibitor of phosphatidylinositol 3-kinase signaling pathway, significantly increased macropinocytosis and phagocytosis but did not affect the mannose receptor-mediated antigen uptake in bovine monocytes. Protein expression data support these findings by showing decreased levels of phosphoinositide 3-kinase in the presence of wortmannin during macropinocytosis. We expanded further the key role of phosphatidylinositol 3-kinase as an endogenous suppressor of primary immune responses, suggesting a novel mechanism of phosphatidylinositol 3-kinase antigen uptake modulation that may provide a unique therapeutic target for controlling excessive inflammation.
    Journal of Applied Research in Veterinary Medicine, The 08/2014; 1(2). · 0.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methane is produced in the rumen of cattle by a group of archaea (single-celled organisms forming a domain distinct from bacteria and eucarya) called methanogens. Vaccination against methanogens has the potential to reduce methane emissions by inducing antibodies in saliva which are transferred to the rumen and diminish the ability of methanogens to produce methane. Since it is likely that an effective vaccination strategy will need to produce high levels of methanogen-specific antibody in the saliva; the choice of adjuvant, route of vaccination and stability of saliva-derived antibody in the rumen all need to be considered. In this study, stability of IgA and IgG in rumen fluid was determined using an in vitro assay. IgA levels in cattle saliva were reduced by only 40% after 8h exposure to rumen contents while IgG levels were reduced by 80%. These results indicated that antibody is relatively stable in the bovine rumen. A trial was conducted in cattle to investigate induction of immune responses to a methanogen protein, recombinant glycosyl transferase protein (rGT2) from Methanobrevibacter ruminantium M1. Groups of cattle (n=6) were vaccinated subcutaneously with rGT2, formulated with Montanide ISA61 with or without the TLR4 agonist, monophosphoryl lipid A (MPL). A control group (n=6) was not vaccinated. Strong antigen-specific IgG and moderate IgA responses were measured in the serum and saliva of the vaccinated animals and antibody was also detected in the rumen. Copyright © 2015 Elsevier B.V. All rights reserved.
    Veterinary Immunology and Immunopathology 02/2015; 164(3-4). DOI:10.1016/j.vetimm.2015.02.008 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.
    Immune Network 04/2015; 15(2):51-7. DOI:10.4110/in.2015.15.2.51

Full-text (2 Sources)

Available from
May 21, 2014