Article

AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity.

GlaxoSmithKline Biologicals, Rixensart, Belgium.
The Journal of Immunology (Impact Factor: 5.52). 11/2009; 183(10):6186-97. DOI: 10.4049/jimmunol.0901474
Source: PubMed

ABSTRACT Adjuvant System 04 (AS04) combines the TLR4 agonist MPL (3-O-desacyl-4'-monophosphoryl lipid A) and aluminum salt. It is a new generation TLR-based adjuvant licensed for use in human vaccines. One of these vaccines, the human papillomavirus (HPV) vaccine Cervarix, is used in this study to elucidate the mechanism of action of AS04 in human cells and in mice. The adjuvant activity of AS04 was found to be strictly dependent on AS04 and the HPV Ags being injected at the same i.m. site within 24 h of each other. During this period, AS04 transiently induced local NF-kappaB activity and cytokine production. This led to an increased number of activated Ag-loaded dendritic cells and monocytes in the lymph node draining the injection site, which further increased the activation of Ag-specific T cells. AS04 was also found to directly stimulate those APCs in vitro but not directly stimulate CD4(+) T or B lymphocytes. These AS04-induced innate responses were primarily due to MPL. Aluminum salt appeared not to synergize with or inhibit MPL, but rather it prolonged the cytokine responses to MPL at the injection site. Altogether these results support a model in which the addition of MPL to aluminum salt enhances the vaccine response by rapidly triggering a local cytokine response leading to an optimal activation of APCs. The transient and confined nature of these responses provides further supporting evidence for the favorable safety profile of AS04 adjuvanted vaccines.

0 Bookmarks
 · 
181 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. LPS elicits strong immunopathological responses during bacterial infection, and the lipid A moiety of LPS is responsible for this immunostimulatory activity. Lipid A exerts its biological activity by sending signals via TLR4 present on immune cells, and TLR4 agonists have been a target for vaccine adjuvant. Previously, we demonstrated an adjuvant activity of deacylated lipooligosaccharide (dLOS) to viral and bacterial antigens. In this study, we characterized the chemical structure of dLOS and evaluated its immunostimulatory activity on mouse and human immune cells in comparison with monophosphoryl lipid A (MPL). dLOS consists of a core oligosaccharide lacking the terminal glucose residue, a glucosamine disaccharide with two phosphate groups, and two N-linked acyl groups. dLOS was similar to MPL in induction of cytokine production in mouse peritoneal macrophages, but was a more potent activator in human monocytes and dendritic cells (DCs). Results of an analysis of allogeneic T cell responses revealed that dLOS induces Th1, Th2, and Th17-type immune responses in a dose-dependent manner. The immunostimulatory activities of dLOS were completely abrogated in TLR4(-/-) mice, which confirms its TLR4-dependency. These results suggest that in the presence of the core oligosaccharide, O-linked acyl groups of LPS are dispensable for activating the TLR4 signaling pathway. dLOS did not cause any pathological effects or death at 0.25, 0.5, or 1 mg per kg body weight in mice in the acute toxicity tests. This result suggests that dLOS has a low toxicity. dLOS should be considered for further development as a safe and effective adjuvant for human vaccines.
    PLoS ONE 01/2014; 9(1):e85838. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aluminum-adjuvanted vaccines are administered through an intramuscular injection (IM) in the US and EU, however, a subcutaneous injection (SC) has been recommended in Japan because of serious muscle contracture previously reported following multiple IMs of antibiotics. Newly introduced adjuvanted vaccines, such as the human papillomavirus (HPV) vaccines, have been recommended through IM. In the present study, currently available vaccines were evaluated through IM in mice. Aluminum-adjuvanted vaccines induced inflammatory nodules at the injection site, which expanded into the intra-muscular space without any muscle degeneration or necrosis, whereas non-adjuvanted vaccines did not. These nodules consisted of polymorph nuclear neutrophils with some eosinophils within the initial 48h, then monocytes/macrophages 1 month later. Inflammatory nodules were observed 6 months after IM, had decreased in size, and were absorbed 12 months after IM, which was earlier than that after SC. Cytokine production was examined in the injected muscular tissues and AS04 adjuvanted HPV induced higher IL-1β, IL-6, KC, MIP-1, and G-CSF levels in muscle tissues than any other vaccine, but similar serum cytokine profiles were observed to those induced by the other vaccines. Currently available vaccines did not induce muscular degeneration or fibrotic scar as observed with muscle contracture caused by multiple IMs of antibiotics in the past.
    Vaccine 04/2014; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent reports that TLR4 and TLR7 ligands can synergistically trigger Th1 biased immune responses suggest that an adjuvant that contains both ligands would be an excellent candidate for co-administration with vaccine antigens for which heavily Th1 biased responses are desired. Ligands of each of these TLRs generally have disparate biochemical properties, however, and straightforward co-formulation may represent an obstacle. We show here that the TLR7 ligand, imiquimod, and the TLR4 ligand, GLA, synergistically trigger responses in human whole blood. We combined these ligands in an anionic liposomal formulation where the TLR7 ligand is in the interior of the liposome and the TLR4 ligand intercalates into the lipid bilayer. The new liposomal formulations are stable for at least a year and have an attractive average particle size of around 140 nm allowing sterile filtration. The synergistic adjuvant biases away from Th2 responses, as seen by significantly reduced IL-5 and enhanced interferon gamma production upon antigen-specific stimulation of cells from immunized mice, than any of the liposomal formulations with only one TLR agonist. Qualitative alterations in antibody responses in mice demonstrate that the adjuvant enhances Th1 adaptive immune responses above any adjuvant containing only a single TLR ligand as well. We now have a manufacturable, synergistic TLR4/TLR7 adjuvant that is made with excipients and agonists that are pharmaceutically acceptable and will have a straightforward path into human clinical trials.
    Journal of Nanobiotechnology 04/2014; 12(1):17. · 5.09 Impact Factor

Full-text (2 Sources)

View
19 Downloads
Available from
May 21, 2014