Article

Decorin is significantly overexpressed in nephrogenic systemic fibrosis.

Department of Dermatology and Allergology, Ruhr-University Bochum, Bochum, Germany.
American Journal of Clinical Pathology (Impact Factor: 2.88). 07/2009; 132(1):139-43. DOI: 10.1309/AJCPGB55YDURJXZC
Source: PubMed

ABSTRACT The role of the proteoglycans in the pathogenesis of nephrogenic systemic fibrosis (NSF) is unclear. We assessed expression of decorin, versican, and transforming growth factor beta1 (TGF-beta1) in skin specimens of 10 patients with biopsy-proven NSF and different control groups. Real-time reverse transcription-polymerase chain reaction studies and immunohistochemical analysis were performed on full-thickness skin specimens. The messenger RNA (mRNA) and protein levels of decorin were significantly higher in the skin lesions of patients with NSF than in skin lesions of patients with systemic sclerosis, patients undergoing hemodialysis, and healthy subjects. The versican mRNA levels in NSF lesions differed significantly only from the levels in healthy subjects. TGF-beta1 mRNA expression was significantly overexpressed in NSF lesions compared with control skin specimens investigated. In NSF specimens, the mRNA expression of TGF-beta1 and decorin were highly correlated (r = 0.92). Our results suggest that decorin and TGF-beta1 may have a fundamental role in the pathogenesis of NSF. Conversely, versican seems less likely to be of pathogenetic significance in NSF.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nephrogenic Systemic Fibrosis is a rare condition appearing only in patients with severe renal impairment or failure and presents with dermal lesions and involvement of internal organs. Although many cases are mild, an estimated 5% have a progressive debilitating course. To date, there is no known effective treatment thus stressing the necessity of ample prevention measures. An association with the use of Gadolinium based contrast agents (GBCA) makes Nephrogenic Systemic Fibrosis a potential side effect of contrast enhanced magnetic resonance imaging and offers the opportunity for prevention by limiting use of gadolinium based contrast agents in renal failure patients. In itself toxic, Gadolinium is embedded into chelates that allow its safe use as a contrast agent. One NSF theory is that Gadolinium chelates distribute into the extracellular fluid compartment and set Gadolinium ions free, depending on multiple factors among which the duration of chelates exposure is directly related to the renal function. Major medical societies both in Europe and in North America have developed guidelines for the usage of GBCA. Since the establishment of these guidelines and the increased general awareness of this condition, the occurrence of NSF has been nearly eliminated. Giving an overview over the current knowledge of NSF pathobiochemistry, pathogenesis and treatment options this review focuses on the guidelines of the European Medicines Agency, the European Society of Urogenital Radiology, the FDA and the American College of Radiology from 2008 up to 2011 and the transfer of this knowledge into every day practice.
    Journal of Cardiovascular Magnetic Resonance 05/2012; 14:31. · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nephrogenic systemic fibrosis (NSF) is a rare and a debilitating disease noted uncommonly in patients with impaired renal function when exposed to low-stability gadolinium-based contrast agents (Gd-CAs). According to experimental studies, cytokines released by the stimulation of effector cells such as skin macrophages and peripheral blood monocytes activate circulating fibroblasts which play a major role in the development of NSF lesions. The presence of permissive factors, presumably, provides an environment conducive to facilitate the process of fibrosis. Multiple treatment modalities have been tried with variable success rates. More research is necessary to elucidate the underlying pathophysiological mechanisms which could potentially target the initial steps of fibrosis in these patients. This paper attempts to collate the inferences from the in vivo and in vitro experiments to the clinical observations to understand the pathogenesis of NSF. Schematic representations of receptor-mediated molecular pathways of activation of macrophages and fibroblasts by gadolinium and the final pathway to fibrosis are incorporated in the discussion.
    International journal of nephrology. 01/2012; 2012:912189.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Decorin (DCN), a component of the extracellular matrix of the peritubular wall and the interstitial areas of the human testis, can interact with growth factor (GF) signalling, thereby blocking downstream actions of GFs. In the present study the expression and regulation of DCN using both human testes and two experimental animal models, namely the rhesus monkey and mouse, were examined. DCN protein was present in peritubular and interstitial areas of adult human and monkey testes, while it was almost undetectable in adult wild type mice. Interestingly, the levels and sites of testicular DCN expression in the monkeys were inversely correlated with testicular maturation markers. A strong DCN expression associated with the abundant connective tissue of the interstitial areas in the postnatal through pre-pubertal phases was observed. In adult and old monkeys the DCN pattern was similar to the one in normal human testes, presenting strong expression at the peritubular region. In the testes of both infertile men and in a mouse model of inflammation associated infertility (aromatase-overexpressing transgenic mice), the fibrotic changes and increased numbers of tumour necrosis factor (TNF)-α-producing immune cells were shown to be associated with increased production of DCN. Furthermore, studies with human testicular peritubular cells isolated from fibrotic testis indicated that TNF-α significantly increased DCN production. The data, thus, show that an increased DCN level is associated with impaired testicular function, supporting our hypothesis that DCN interferes with paracrine signalling of the testis in health and disease.
    International Journal of Andrology 11/2011; 35(4):550-61. · 3.37 Impact Factor