Article

Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown.

Neuroscience and Molecular Pharmacology, FBLS, University of Glasgow, University Avenue, Glasgow, G12 8QQ, Scotland, UK.
Trends in Biochemical Sciences (Impact Factor: 13.52). 10/2009; 35(2):91-100. DOI: 10.1016/j.tibs.2009.09.007
Source: PubMed

ABSTRACT It is becoming increasingly apparent that spatial regulation of cell signalling processes is critical to normal cellular function. In this regard, cAMP signalling regulates many pivotal cellular processes and has provided the paradigm for signal compartmentalization. Recent advances show that isoforms of the cAMP-degrading phosphodiesterase-4 (PDE4) family are targeted to discrete signalling complexes. There they sculpt local cAMP gradients that can be detected by genetically encoded cAMP sensors, and gate the activation of spatially localized signalling through sequestered PKA and EPAC sub-populations. Genes for these important regulatory enzymes are linked to schizophrenia, stroke and asthma, thus indicating the therapeutic potential that selective inhibitors could have as anti-inflammatory, anti-depressant and cognitive enhancer agents.

0 Followers
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture has beneficial effects in vascular dementia (VaD) patients. The underlying mechanism, however, remains unknown. The present study was designed to investigate whether the cAMP/PKA/CREB cascade is involved in the mechanism of acupuncture in cerebral multi-infarction rats. In this study, cerebral multi-infarction was modeled in adult Wistar rats by homologous blood clot emboli. After a two-week acupuncture treatment at Zusanli (ST36), hippocampal-dependent memory was tested by employing a radial arm maze test. The hippocampus was isolated for analyses of cAMP concentration, phosphodiesterase (PDE) activity and CREB/pCREB and ERK/pERK expressions. The Morris water maze (MWM) task and CREB phosphorylation were evaluated in the presence of PKA-selective peptide inhibitor (H89). The radial arm maze test results demonstrated that acupuncture treatment at ST36 reversed hippocampal-dependent memory in impaired animals. Compared to those of the impaired group, cAMP concentration, PKA activity and pCREB and pERK expressions were increased following acupuncture therapy. Finally, the blockade of PKA reversed the increase in CREB phosphorylation and the improvement in recognitive function induced by acupuncture treatment. These results suggest that acupuncture could improve hippocampus function by modulating the cAMP/PKA/CREB signaling pathway, which represents a molecular mechanism of acupuncture for recognitive function in cerebral multi-infarction rats. Copyright © 2014. Published by Elsevier Inc.
    Physiology & Behavior 12/2014; 139. DOI:10.1016/j.physbeh.2014.12.001 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PDE4 family cAMP phosphodiesterases play a pivotal role in determining compartmentalised cAMP signalling through targeted cAMP breakdown. Expressing the widely found PDE4D5 isoform, as both bait and prey in a yeast 2-hybrid system, we demonstrated interaction consistent with the notion that long PDE4 isoforms form dimers. Four potential dimerization sites were uncovered using a scanning peptide array approach, where a recombinant purified PDE4D5 fusion protein was used to probe a 25-mer library of overlapping peptides covering the entire PDE4D5 sequence. Key residues involved in PDE4D5 dimerization were defined using a site-directed mutagenesis programme directed by an alanine scanning peptide array approach. Critical residues stabilising PDE4D5 dimerization were defined within the regulatory UCR1 region found in long, but not short, PDE4 isoforms, namely the Arg173, Asn174 and Asn175 (DD1) cluster. Disruption of the DD1 cluster was not sufficient, in itself, to destabilise PDE4D5 homodimers. Instead, disruption of an additional interface, located on the PDE4 catalytic unit, was also required to convert PDE4D5 into a monomeric form. This second dimerization site on the conserved PDE4 catalytic unit is dependent upon a critical ion pair interaction. This involves Asp463 and Arg499 in PDE4D5, which interact in a trans fashion involving the two PDE4D5 molecules participating in the homodimer. PDE4 long isoforms adopt a dimeric state in living cells that is underpinned by two key contributory interactions, one involving the UCR modules and one involving an interface on the core catalytic domain. We propose that short forms do not adopt a dimeric configuration because, in the absence of the UCR1 module, residual engagement of the remaining core catalytic domain interface provides insufficient free energy to drive dimerization. The functioning of PDE4 long and short forms is thus poised to be inherently distinct due to this difference in quaternary structure.
    Cellular Signalling 12/2014; 27(4). DOI:10.1016/j.cellsig.2014.12.009 · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cyclic AMP phosphodiesterases type 4 (PDE4s) are expressed in a cell specific manner, with intracellular targeting directed by unique N-terminal anchor domains. All long form PDE4s are phosphorylated and activated by PKA phosphorylation within their upstream conserved region 1 (UCR1). Here, we identify and characterise a novel PKA site (serine 42) within the N-terminal region of PDE4D7, an isoform whose activity is known to be important in prostate cancer progression and ischemic stroke. In contrast to the UCR1 site, PKA phosphorylation of the PDE4D7 N-terminus appears to occur constitutively and inhibits PDE4 activity to allow cAMP signalling under basal conditions.
    FEBS Letters 02/2015; 276(6). DOI:10.1016/j.febslet.2015.02.004 · 3.34 Impact Factor

Preview

Download
0 Downloads
Available from