Article

High-frequency mode conversion technique for stiff lesion detection with magnetic resonance elastography (MRE).

Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA.
Magnetic Resonance in Medicine (Impact Factor: 3.27). 10/2009; 62(6):1457-65. DOI: 10.1002/mrm.22091
Source: PubMed

ABSTRACT A novel imaging technique is described in which the mode conversion of longitudinal waves is used for the qualitative detection of stiff lesions within soft tissue using magnetic resonance elastography (MRE) methods. Due to the viscoelastic nature of tissue, high-frequency shear waves attenuate rapidly in soft tissues but much less in stiff tissues. By introducing minimally-attenuating longitudinal waves at a significantly high frequency into tissue, shear waves produced at interfaces by mode conversion will be detectable in stiff regions, but will be significantly attenuated and thus not detectable in the surrounding soft tissue. This contrast can be used to detect the presence of stiff tissue. The proposed technique is shown to readily depict hard regions (mimicking tumors) present in tissue-simulating phantoms and ex vivo breast tissue. In vivo feasibility is demonstrated on a patient with liver metastases in whom the tumors are readily distinguished. Preliminary evidence also suggests that quantitative stiffness measurements of stiff regions obtained with this technique are more accurate than those from conventional MRE because of the short shear wavelengths. This rapid, qualitative technique may lend itself to applications in which the localization of stiff, suspicious neoplasms is coupled with more sensitive techniques for thorough characterization.

0 Bookmarks
 · 
188 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE.
    Journal of biomechanics 01/2012; 45(6):952-7. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue stiffness is known to undergo alterations when affected by prostate cancer and may serve as an indicator of the disease. Stiffness measurements can be made with magnetic resonance elastography performed using a transurethral actuator to generate shear waves in the prostate gland. The goal of this study was to help determine the imaging requirements of transurethral magnetic resonance elastography and to evaluate whether the spatial and stiffness resolution of this technique overlapped with the requirements for prostate cancer detection. Through the use of prostate-mimicking gelatin phantoms, frequencies of at least 400 Hz were necessary to obtain accurate stiffness measurements of 10 mm diameter inclusions, but the detection of inclusions with diameters as small as 4.75 mm was possible at 200 Hz. The shear wave attenuation coefficient was measured in vivo in the canine prostate gland, and was used to predict the detectable penetration depth of shear waves in prostate tissue. These results suggested that frequencies below 200 Hz could propagate to the prostate boundary with a signal to noise ratio (SNR) of 60 and an actuator capable of producing 60 μm displacements. These requirements are achievable with current imaging and actuator technologies, and motivate further investigation of magnetic resonance elastography for the targeting of prostate cancer.
    Magnetic Resonance in Medicine 09/2010; 65(2):340-9. · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Axial strain imaging has been utilized for the characterization of breast masses for over a decade; however, another important feature namely the shear strain distribution around breast masses has only recently been used. In this article, we examine the feasibility of utilizing in vivo axial-shear strain imaging for differentiating benign from malignant breast masses. Radio-frequency data was acquired using a VFX 13-5 linear array transducer on 41 patients using a Siemens SONOLINE Antares real-time clinical scanner at the University of Wisconsin Breast Cancer Center. Free-hand palpation using deformations of up to 10% was utilized to generate axial strain and axial-shear strain images using a two-dimensional cross-correlation algorithm from the radio-frequency data loops. Axial-shear strain areas normalized to the lesion size, applied strain and lesion strain contrast was utilized as a feature for differentiating benign from malignant masses. The normalized axial-shear strain area feature estimated on eight patients with malignant tumors and 33 patients with fibroadenomas was utilized to demonstrate its potential for lesion differentiation. Biopsy results were considered the diagnostic standard for comparison. Our results indicate that the normalized axial-shear strain area is significantly larger for malignant tumors compared with benign masses such as fibroadenomas. Axial-shear strain pixel values greater than a specified threshold, including only those with correlation coefficient values greater than 0.75, were overlaid on the corresponding B-mode image to aid in diagnosis. A scatter plot of the normalized area feature demonstrates the feasibility of developing a linear classifier to differentiate benign from malignant masses. The area under the receiver operator characteristic curve utilizing the normalized axial-shear strain area feature was 0.996, demonstrating the potential of this feature to noninvasively differentiate between benign and malignant breast masses.
    Ultrasound in medicine & biology 11/2010; 36(11):1813-24. · 2.46 Impact Factor

Full-text

View
41 Downloads
Available from
May 22, 2014