Recognition of lyso-phospholipids by human natural killer T lymphocytes.

Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
PLoS Biology (Impact Factor: 12.69). 10/2009; 7(10):e1000228. DOI: 10.1371/journal.pbio.1000228
Source: PubMed

ABSTRACT Natural killer T (NKT) cells are a subset of T lymphocytes with potent immunoregulatory properties. Recognition of self-antigens presented by CD1d molecules is an important route of NKT cell activation; however, the molecular identity of specific autoantigens that stimulate human NKT cells remains unclear. Here, we have analyzed human NKT cell recognition of CD1d cellular ligands. The most clearly antigenic species was lyso-phosphatidylcholine (LPC). Diacylated phosphatidylcholine and lyso-phosphoglycerols differing in the chemistry of the head group stimulated only weak responses from human NKT cells. However, lyso-sphingomyelin, which shares the phosphocholine head group of LPC, also activated NKT cells. Antigen-presenting cells pulsed with LPC were capable of stimulating increased cytokine responses by NKT cell clones and by freshly isolated peripheral blood lymphocytes. These results demonstrate that human NKT cells recognize cholinated lyso-phospholipids as antigens presented by CD1d. Since these lyso-phospholipids serve as lipid messengers in normal physiological processes and are present at elevated levels during inflammatory responses, these findings point to a novel link between NKT cells and cellular signaling pathways that are associated with human disease pathophysiology.

  • [Show abstract] [Hide abstract]
    ABSTRACT: It was previously reported that the amounts of lysophosphatidylcholines (lysoPCs), which are naturally occurring bioactive lipid molecules, significantly increase following pathogen inoculation, as determined using ultraperformance liquid chromatography-quadrupole-time of flight/mass spectrometry analyses. Here, real-time quantitative RT-PCR was performed for the phospholipase A2 (PLA2) genes, Nt1PLA2 and Nt2PLA2, which are responsible for LysoPCs generation. The transcription level of Nt2PLA2 in pathogen-infected tobacco plants transiently peaked at 1h and 36h, whereas induction of Nt1PLA2 transcription peaked at 36h. A prominent biphasic ROS accumulation in lysoPC (C18:1(9Z))-treated tobacco leaves was also observed. Transcription of NtRbohD, a gene member of NADPH oxidase, showed biphasic kinetics upon lysoPC 18:1 treatment, as evidenced by an early transient peak in phase I at 1h and a massive peak in phase II at 12h. Each increase in NtACS2 and NtACS4 transcription, gene members of the ACC synthase family, was followed by biphasic peaks of ethylene production after lysoPC 18:1 treatment. This suggested that lysoPC (C18:1)-induced ethylene production was regulated at the transcriptional level of time-dependent gene members. LysoPC 18:1 treatment also rapidly induced cell damage. LysoPC 18:1-induced cell death was almost completely abrogated in ROS generation-impaired transgenic plants (rbohD-as and rbohF-as), ethylene production-impaired transgenic plants (CAS-AS and CAO-AS), and ethylene signaling-impaired transgenic plants (Ein3-AS), respectively. Taken together, pathogen-induced lysoPCs enhance pathogen susceptibility accompanied by ROS and ethylene biosynthesis, resulting in chlorophyll degradation and cell death. Expression of PR genes (PR1-a, PR-3, and PR-4b) and LOX3 was strongly induced in lysoPC 18:1-treated leaves, indicating the involvement of lysoPC 18:1 in the defense response. However, lysoPC 18:1 treatment eventually resulted in cell death, as evidenced by metacaspase gene expression. Therefore, a hypothesis is proposed that the antipathogenic potential of lysoPC 18:1 is dependent on how quickly it is removed from cells for avoidance of lysoPC toxicity.
    Phytochemistry 05/2014; · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmalogen lysophosphatidylethanolamine (pLPE) had been identified as a self antigen for natural killer T cells (NKT cells). It is very important in the development, maturation and activation of NKT cells in thymus. Besides, pLPE is a novel type of antigen for NKT cells. To evaluate the structure-activity relationship (SAR) of this new antigen, pLPE and its analogues referred to different aliphatic chains and linkages at the sn-1 position of the glycerol backbone were synthesized, and the biological activities of these analogues was characterized. It is discovered that the linkages between phosphate and lipid moiety are not important for the antigens' activities. The pLPE analogues 1, 3, 4, 7 and 9, which have additional double bonds on lipid parts, were identified as new NKT agonists. Moreover, the analogues 4, 7 and 9 were discovered as potent Th2 activators for NKT cells.
    Bioorganic & medicinal chemistry 04/2014; · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-cells recognize lipid antigens presented by dedicated antigen-presenting molecules that belong to the CD1 family. This review discusses the structural properties of CD1 molecules, the nature of mycobacterial lipid antigens, and the phenotypic and functional properties of T-cells recognizing mycobacterial lipids. In humans, the five CD1 genes encode structurally similar glycoproteins that recycle in and thus survey different cellular endosomal compartments. The structure of the CD1-lipid-binding pockets, their mode of intracellular recycling and the type of CD1-expressing antigen-presenting cells all contribute to diversify lipid immunogenicity and presentation to T-cells. Mycobacteria produce a large variety of lipids, which form stable complexes with CD1 molecules and stimulate specific T-cells. The structures of antigenic lipids may be greatly different from each other and each lipid may induce unique T-cells capable of discriminating small lipid structural changes. The important functions of some lipid antigens within mycobacterial cells prevent the generation of negative mutants capable of escaping this type of immune response. T-cells specific for lipid antigens are stimulated in tuberculosis and exert protective functions. The mechanisms of antigen recognition, the type of effector functions and the mode of lipid-specific T-cell priming are discussed, emphasizing recent evidence of the roles of lipid-specific T-cells in tuberculosis.
    Frontiers in Immunology 01/2014; 5:219.

Full-text (2 Sources)

Available from
Jun 2, 2014