Article

Recognition of lyso-phospholipids by human natural killer T lymphocytes.

Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
PLoS Biology (Impact Factor: 11.77). 10/2009; 7(10):e1000228. DOI: 10.1371/journal.pbio.1000228
Source: PubMed

ABSTRACT Natural killer T (NKT) cells are a subset of T lymphocytes with potent immunoregulatory properties. Recognition of self-antigens presented by CD1d molecules is an important route of NKT cell activation; however, the molecular identity of specific autoantigens that stimulate human NKT cells remains unclear. Here, we have analyzed human NKT cell recognition of CD1d cellular ligands. The most clearly antigenic species was lyso-phosphatidylcholine (LPC). Diacylated phosphatidylcholine and lyso-phosphoglycerols differing in the chemistry of the head group stimulated only weak responses from human NKT cells. However, lyso-sphingomyelin, which shares the phosphocholine head group of LPC, also activated NKT cells. Antigen-presenting cells pulsed with LPC were capable of stimulating increased cytokine responses by NKT cell clones and by freshly isolated peripheral blood lymphocytes. These results demonstrate that human NKT cells recognize cholinated lyso-phospholipids as antigens presented by CD1d. Since these lyso-phospholipids serve as lipid messengers in normal physiological processes and are present at elevated levels during inflammatory responses, these findings point to a novel link between NKT cells and cellular signaling pathways that are associated with human disease pathophysiology.

Download full-text

Full-text

Available from: Jenny E Gumperz, Jul 03, 2015
0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1c is expressed with high density on human dendritic cells (DCs) and B cells, yet its antigen presentation functions are the least well understood among CD1 family members. Using a CD1c-reactive T cell line (DN6) to complete an organism-wide survey of M. tuberculosis lipids, we identified C32 phosphomycoketide (PM) as a previously unknown molecule and a CD1c-presented antigen. CD1c binding and presentation of mycoketide antigens absolutely required the unusual, mycobacteria-specific lipid branching patterns introduced by polyketide synthase 12 (pks12). Unexpectedly, one TCR responded to diversely glycosylated and unglycosylated forms of mycoketide when presented by DCs and B cells. Yet cell-free systems showed that recognition was mediated only by the deglycosylated phosphoantigen. These studies identify antigen processing of a natural bacterial antigen in the human CD1c system, indicating that cells act on glycolipids to generate a highly simplified neoepitope composed of a sugar-free phosphate anion. Using knowledge of this processed antigen, we generated human CD1c tetramers, and demonstrate that CD1c-PM complexes stain T cell receptors (TCRs), providing direct evidence for a ternary interaction among CD1c-lipid-TCR. Furthermore, PM-loaded CD1c tetramers detect fresh human T cells from peripheral blood, demonstrating a polyclonal response to PM antigens in humans ex vivo.
    Journal of Experimental Medicine 03/2013; 210(4). DOI:10.1084/jem.20120624 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant Natural Killer T (iNKT) cells use highly restricted αβ T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A' pocket. Binding of the iNKT TCR requires a 7-Å displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3β and Jβ segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.
    The EMBO Journal 03/2012; 31(8):2047-59. DOI:10.1038/emboj.2012.54 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NKT cells are innate lymphocytes that can recognize self or foreign lipids presented by CD1d molecules. NKT cells have been shown to inhibit the development of autoimmunity in murine model systems, however, the pathways by which they foster immune tolerance remain poorly understood. Here we show that autoreactive human NKT cells stimulate monocytes to differentiate into myeloid APCs that have a regulatory phenotype characterized by poor conjugate formation with T cells. The NKT cell instructed myeloid APCs show elevated expression of the inhibitory ligand PD-L2, and blocking PD-L1 and PD-L2 during interactions of the APCs with T cells results in improved cluster formation and significantly increased T cell proliferative responses. The elevated expression of PD-L molecules on NKT-instructed APCs appears to result from exposure to extracellular ATP that is produced during NKT-monocyte interactions, and blocking purinergic signaling during monocyte differentiation results in APCs that form clusters with T cells and stimulate their proliferation. Finally, we show that human monocytes and NKT cells that are injected into immunodeficient mice co-localize together in spleen and liver, and after 3 days in vivo in the presence of NKT cells a fraction of the myeloid cells have upregulated markers associated with differentiation into professional APCs. These results suggest that autoreactive human NKT cells may promote tolerance by inducing the differentiation of regulatory myeloid APCs that limit T cell proliferation through expression of PD-L molecules.
    Journal of Autoimmunity 08/2011; 37(1):28-38. DOI:10.1016/j.jaut.2011.03.001 · 7.02 Impact Factor