Recognition of lyso-phospholipids by human natural killer T lymphocytes.

Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
PLoS Biology (Impact Factor: 11.77). 10/2009; 7(10):e1000228. DOI: 10.1371/journal.pbio.1000228
Source: PubMed

ABSTRACT Natural killer T (NKT) cells are a subset of T lymphocytes with potent immunoregulatory properties. Recognition of self-antigens presented by CD1d molecules is an important route of NKT cell activation; however, the molecular identity of specific autoantigens that stimulate human NKT cells remains unclear. Here, we have analyzed human NKT cell recognition of CD1d cellular ligands. The most clearly antigenic species was lyso-phosphatidylcholine (LPC). Diacylated phosphatidylcholine and lyso-phosphoglycerols differing in the chemistry of the head group stimulated only weak responses from human NKT cells. However, lyso-sphingomyelin, which shares the phosphocholine head group of LPC, also activated NKT cells. Antigen-presenting cells pulsed with LPC were capable of stimulating increased cytokine responses by NKT cell clones and by freshly isolated peripheral blood lymphocytes. These results demonstrate that human NKT cells recognize cholinated lyso-phospholipids as antigens presented by CD1d. Since these lyso-phospholipids serve as lipid messengers in normal physiological processes and are present at elevated levels during inflammatory responses, these findings point to a novel link between NKT cells and cellular signaling pathways that are associated with human disease pathophysiology.


Available from: Jenny E Gumperz, May 28, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of venoms unexpectedly showed that stimulatory factors partition into protein-containing fractions. This finding was explained by demonstrating that bee venom-derived phospholipase A2 (PLA2) activates T cells through generation of small neoantigens, such as free fatty acids and lysophospholipids, from common phosphodiacylglycerides. Patient studies showed that injected PLA2 generates lysophospholipids within human skin in vivo, and polyclonal T cell responses are dependent on CD1a protein and PLA2. These findings support a previously unknown skin immune response based on T cell recognition of CD1a proteins and lipid neoantigen generated in vivo by phospholipases. The findings have implications for skin barrier sensing by T cells and mechanisms underlying phospholipase-dependent inflammatory skin disease. © 2015 Bourgeois et al.
    Journal of Experimental Medicine 02/2015; 212(2). DOI:10.1084/jem.20141505 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate lymphocytes have recently received a lot of attention. However, there are different ideas about the definition of what is “innate” in lymphocytes. Lymphocytes without V(D)J-rearranged antigen receptors are now termed innate lymphoid cells (ILCs) and include cells formerly known as natural killer (NK) cells. Also, lymphocytes that are innate should be able to recognize microbial or stress-induced patterns and react rapidly without prior sensitization, as opposed to adaptive immune responses. Formally, genuine innate lymphocytes would be present before or at birth. Here, we review the ontogeny of human and mouse innate T lymphocyte populations. We focus on γδ T cells, which are prototype lymphocytes that often use their V(D)J rearrangement machinery to generate genetically encoded predetermined recombinations of antigen receptors. We make parallels between the development of γδ T cells with that of innate αβ T cells [invariant (i)NKT and mucosa-associated invariant T cells] and compare this with the ontogeny of innate B cells and ILCs (including NK cells). We conclude that some subsets are more innate than others, i.e., innate lymphocytes that are made primarily early in utero during gestation while others are made after birth. In practice, a ranking of innateness by ontogeny has implications for the reconstitution of innate lymphocyte subsets after hematopoietic stem cell transplantation.
    Frontiers in Immunology 10/2014; 5. DOI:10.3389/fimmu.2014.00486
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant natural killer T cells (iNKT cells) are a unique subset of T lymphocytes and are considered to play an important role in the development of allergic bronchial asthma. Recently, iNKT cells were shown to play an immunoregulatory role in CD4+ and CD8+ T cell-mediated adaptive immune response. Allergen-specific Th2 inflammatory responses are an important part of the adaptive immune response in asthma. However, the regulatory functions of the Th2 inflammatory response in asthma have not been studied in detail. In this study, we have investigated the regulatory functions of iNKT cells on the Th2 inflammatory response in an ovalbumin (OVA)-induced murine model of asthma. Our results demonstrate that α-Galactosylceramide (α-GalCer) administration activated iNKT cells but could not induce the Th2 inflammatory response in wild-type (WT) mice. In the OVA-induced asthma model, α-GalCer administration and adoptive transfer of iNKT cells significantly augmented the Th2 inflammatory responses, including elevated inflammatory cell infiltration in the lung and bronchoalveolar lavage fluid (BALF); increased levels of IL-4, IL-5, and IL-13 in the BALF and splenocyte culture supernatant; and increased serum levels of OVA-specific IgE and IgG1. In addition, the Th2 inflammatory response was reduced, but not completely abrogated in CD1d-/- mice immunized and challenged with OVA, compared with WT mice. These results suggest that iNKT cells may serve as an adjuvant to enhance Th2 inflammatory response in an OVA-induced murine model of asthma.
    PLoS ONE 01/2015; 10(4):e0119901. DOI:10.1371/journal.pone.0119901 · 3.53 Impact Factor