Article

Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth.

Division of Radiation and Cancer Biology, Department of Radiation Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA 94303-5152, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 10/2009; 30(1):344-53. DOI: 10.1128/MCB.00444-09
Source: PubMed

ABSTRACT The hypoxia-inducible transcription factors (HIFs) directly and indirectly mediate cellular adaptation to reduced oxygen tensions. Recent studies have shown that the histone demethylase genes JMJD1A, JMJD2B, and JARID1B are HIF targets, suggesting that HIFs indirectly influence gene expression at the level of histone methylation under hypoxia. In this study, we identify a subset of hypoxia-inducible genes that are dependent on JMJD1A in both renal cell and colon carcinoma cell lines. JMJD1A regulates the expression of adrenomedullin (ADM) and growth and differentiation factor 15 (GDF15) under hypoxia by decreasing promoter histone methylation. In addition, we demonstrate that loss of JMJD1A is sufficient to reduce tumor growth in vivo, demonstrating that histone demethylation plays a significant role in modulating growth within the tumor microenvironment. Thus, hypoxic regulation of JMJD1A acts as a signal amplifier to facilitate hypoxic gene expression, ultimately enhancing tumor growth.

0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kdm3b is a Jumonji C domain-containing protein that demethylates mono- and di-methylated lysine 9 of histone H3 (H3K9me1 and H3K9me2). Although the enzyme activity of Kdm3b is well characterized in vitro, its genetic and physiological function remains unknown. Herein, we generated Kdm3b knockout (Kdm3bKO) mice and observed restricted postnatal growth and female infertility in these mice. We found that Kdm3b ablation decreased IGFBP-3 expressed in the kidney by 53% and significantly reduced IGFBP-3 in the blood, which caused an accelerated degradation of IGF-1 and a 36% decrease in circulating IGF-1 concentration. We also found Kdm3b was highly expressed in the female reproductive organs including ovary, oviduct and uterus. Knockout of Kdm3b in female mice caused irregular estrous cycles, decreased 45% of the ovulation capability and 47% of the fertilization rate, and reduced 44% of the uterine decidual response, which were accompanied with a more than 50% decrease in the circulating levels of the 17beta-estradiol. Importantly, these female reproductive phenotypes were associated with significantly increased levels of H3K9me1/2/3 in the ovary and uterus. These results demonstrate that Kdm3b-mediated H3K9 demethylation plays essential roles in maintenance of the circulating IGF-1, postnatal somatic growth, circulating 17beta-estradiol, and female reproductive function.
    International journal of biological sciences 01/2015; 11(5):494-507. DOI:10.7150/ijbs.11849 · 4.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Athero-thrombosis of the arteries supplying the brain and lower limb are the main causes of stroke and limb loss. New therapies are needed to improve the outcomes of athero-thrombosis. Recent evidence suggests a role for epigenetic changes in the development and progression of ischaemic injury due to atherosclerotic occlusion of peripheral arteries. DNA hypermethylation have been associated with cardiovascular diseases. Histone post-translational modifications have also been implicated in atherosclerosis. Oxidized low-density lipoprotein regulated pro-inflammatory gene expression within endothelial cells is controlled by phosphorylation/acetylation of histone H3 and acetylation of histone H4 for example. There are a number of challenges in translating the growing evidence implicating epigenetics in atherosclerosis to improved therapies for patients. These include the small therapeutic window in conditions such as acute stroke and critical limb ischaemia, since interventions introduced in such patients need to act rapidly and be safe in elderly patients with many co-morbidities. Pre-clinical animal experiments have also reported conflicting effects of some novel epigenetic drugs, which suggest that further in-depth studies are required to better understand their efficacy in resolving ischaemic injury. Effective ways of dealing with these challenges are needed before epigenetic approaches to therapy can be introduced into practice.
    Clinical Science 05/2015; 128(9). DOI:10.1042/CS20140491 · 5.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD) enzymes (PHD1-3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3 inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic-osteogenic coupling. We also demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice against bone loss without disrupting hematopoietic homeostasis. Importantly, we identify OPG as a HIF target gene capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic-osteogenic coupling. © 2015 Wu et al.; Published by Cold Spring Harbor Laboratory Press.
    Genes & development 04/2015; 29(8). DOI:10.1101/gad.255000.114 · 12.64 Impact Factor

Preview

Download
0 Downloads
Available from