Article

Neurofilament ELISA validation.

Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
Journal of immunological methods (Impact Factor: 2.01). 10/2009; 352(1-2):23-31. DOI: 10.1016/j.jim.2009.09.014
Source: PubMed

ABSTRACT Neurofilament proteins (Nf) are highly specific biomarkers for neuronal death and axonal degeneration. As these markers become more widely used, an inter-laboratory validation study is required to identify assay criteria for high quality performance.
The UmanDiagnostics NF-light (R)enzyme-linked immunoabsorbent assays (ELISA) for the neurofilament light chain (NfL, 68kDa) was used to test the intra-assay and inter-laboratory coefficient of variation (CV) between 35 laboratories worldwide on 15 cerebrospinal fluid (CSF) samples. Critical factors, such as sample transport and storage, analytical delays, reaction temperature and time, the laboratories' accuracy and preparation of standards were documented and used for the statistical analyses.
The intra-laboratory CV averaged 3.3% and the inter-laboratory CV 59%. The results from the test laboratories correlated with those from the reference laboratory (R=0.60, p<0.0001). Correcting for critical factors improved the strength of the correlation. Differences in the accuracy of standard preparation were identified as the most critical factor. Correcting for the error introduced by variation in the protein standards improved the correlation to R=0.98, p<0.0001 with an averaged inter-laboratory CV of 14%. The corrected overall inter-rater agreement was subtantial (0.6) according to Fleiss' multi-rater kappa and Gwet's AC1 statistics.
This multi-center validation study identified the lack of preparation of accurate and consistent protein standards as the main reason for a poor inter-laboratory CV. This issue is also relevant to other protein biomarkers based on this type of assay and will need to be solved in order to achieve an acceptable level of analytical accuracy. The raw data of this study is available online.

3 Followers
 · 
952 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Rater agreement is important in clinical research, and Cohen’s Kappa is a widely used method for assessing inter-rater reliability; however, there are well documented statistical problems associated with the measure. In order to assess its utility, we evaluated it against Gwet’s AC1 and compared the results. Methods This study was carried out across 67 patients (56% males) aged 18 to 67, with a mean SD of 44.13 ± 12.68 years. Nine raters (7 psychiatrists, a psychiatry resident and a social worker) participated as interviewers, either for the first or the second interviews, which were held 4 to 6 weeks apart. The interviews were held in order to establish a personality disorder (PD) diagnosis using DSM-IV criteria. Cohen’s Kappa and Gwet’s AC1 were used and the level of agreement between raters was assessed in terms of a simple categorical diagnosis (i.e., the presence or absence of a disorder). Data were also compared with a previous analysis in order to evaluate the effects of trait prevalence. Results Gwet’s AC1 was shown to have higher inter-rater reliability coefficients for all the PD criteria, ranging from .752 to 1.000, whereas Cohen’s Kappa ranged from 0 to 1.00. Cohen’s Kappa values were high and close to the percentage of agreement when the prevalence was high, whereas Gwet’s AC1 values appeared not to change much with a change in prevalence, but remained close to the percentage of agreement. For example a Schizoid sample revealed a mean Cohen’s Kappa of .726 and a Gwet’s AC1of .853 , which fell within the different level of agreement according to criteria developed by Landis and Koch, and Altman and Fleiss. Conclusions Based on the different formulae used to calculate the level of chance-corrected agreement, Gwet’s AC1 was shown to provide a more stable inter-rater reliability coefficient than Cohen’s Kappa. It was also found to be less affected by prevalence and marginal probability than that of Cohen’s Kappa, and therefore should be considered for use with inter-rater reliability analysis.
    BMC Medical Research Methodology 04/2013; 13(1). DOI:10.1186/1471-2288-13-61 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurofilament (Nf) proteins have been shown to be promising biomarkers for monitoring and predicting disease progression for various neurological diseases. The aim of this study was to evaluate the effects of pre-analytical variables on the concentration of neurofilament heavy (NfH) and neurofilament light (NfL) proteins. For NfH an in-house newly-developed and validated SinglePlex Luminex assay was used; ELISA was used to analyse NfL. For the NfL ELISA assay, the intra- and inter-assay variation was respectively, 1.5% and 16.7%. Analytical performance of the NfH SinglePlex Luminex assay in terms of sensitivity (6.6pg/mL), recovery in cerebrospinal fluid (CSF) (between 90 and 104%), linearity (from 6.6-1250pg/mL), and inter- and intra-assay variation (<8%) were good. Concentrations of both NfL and NfH appeared not negatively affected by blood contamination, repeated freeze-thaw cycles (up to 4), delayed processing (up to 24hours) and during long-term storage at -20°C, 4°C, and room temperature. A decrease in concentration was observed during storage of both neurofilament proteins up to 21days at 37°C, which was significant by day 5. The newly developed NfH SinglePlex Luminex assay has a good sensitivity and is robust. Moreover, both NfH and NfL are stable under the most prevalent pre-analytical variations.
    Journal of immunological methods 11/2013; DOI:10.1016/j.jim.2013.11.008 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early diagnosis of intensive care unit - acquired weakness (ICU-AW) using the current reference standard, that is, assessment of muscle strength, is often hampered due to impaired consciousness. Biological markers could solve this problem but have been scarcely investigated. We hypothesized that plasma levels of neurofilaments are elevated in ICU-AW and can diagnose ICU-AW before muscle strength assessment is possible. For this prospective observational cohort study, neurofilament levels were measured using ELISA (NfHSMI35 antibody) in daily plasma samples (index test). When patients were awake and attentive, ICU-AW was diagnosed using the Medical Research Council scale (reference standard). Differences and discriminative power (using the area under the receiver operating characteristic curve; AUC) of highest and cumulative (calculated using the area under the neurofilament curve) neurofilament levels were investigated in relation to the moment of muscle strength assessment for each patient. Both the index test and reference standard were available for 77 ICU patients. A total of 18 patients (23%) fulfilled the clinical criteria for ICU-AW. Peak neurofilament levels were higher in patients with ICU-AW and had good discriminative power (AUC: 0.85; 95% CI: 0.72 to 0.97). However, neurofilament levels did not peak before muscle strength assessment was possible. Highest or cumulative neurofilament levels measured before muscle strength assessment could not diagnose ICU-AW (AUC 0.59; 95% CI 0.37 to 0.80 and AUC 0.57; 95% CI 0.32 to 0.81, respectively). Plasma neurofilament levels are raised in ICU-AW and may serve as a biological marker for ICU-AW. However, our study suggests that an early diagnosis of ICU-AW, before muscle strength assessment, is not possible using neurofilament levels in plasma.
    Critical care (London, England) 01/2014; 18(1):R18. DOI:10.1186/cc13699