A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times.

Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Journal of Magnetic Resonance (Impact Factor: 2.3). 10/2009; 202(1):43-56. DOI: 10.1016/j.jmr.2009.09.015
Source: PubMed

ABSTRACT Experiments with two diffusion-weighting periods applied successively in a single experiment, so-called double-wave-vector (DWV) diffusion-weighting experiments, are a promising tool for the investigation of material or tissue structure on a microscopic level, e.g. to determine cell or compartment sizes or to detect pore or cell anisotropy. However, the theoretical descriptions presented so far for experiments that aim to investigate the microscopic anisotropy with a long mixing time between the two diffusion weightings, are limited to certain wave vector orientations, specific pore shapes, and macroscopically isotropic samples. Here, the signal equations for fully restricted diffusion are re-investigated in more detail. A general description of the signal behavior for arbitrary wave vector directions, pore or cell shapes, and orientation distributions of the pores or cells is obtained that involves a fourth-order tensor approach. From these equations, a rotationally invariant measure of the microscopic anisotropy, termed MA, is derived that yields information complementary to that of the (macroscopic) anisotropy measures of standard diffusion-tensor acquisitions. Furthermore, the detailed angular modulation for arbitrary cell shapes with an isotropic orientation distribution is derived. Numerical simulations of the MR signal with a Monte-Carlo algorithms confirm the theoretical considerations. The extended theoretical description and the introduction of a reliable measure of the microscopic anisotropy may help to improve the applicability and reliability of corresponding experiments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different t(m) regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied.
    Journal of Magnetic Resonance 07/2011; 212(2):362-9. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [ Phys. Rev. Lett. 107 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.
    Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 08/2012; 86(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffusional kurtosis imaging (DKI) is extended to double-pulsed-field-gradient (d-PFG) diffusion MRI sequences. This gives a practical approach for acquiring and analyzing d-PFG data. In particular, the leading d-PFG effects, beyond what conventional single-pulsed field gradient (s-PFG) provides, are interpreted in terms of the kurtosis for a diffusion displacement probability density function (dPDF) in a six-dimensional (6D) space. The 6D diffusional kurtosis encodes the unique information provided by d-PFG sequences up to second order in the b-value. This observation leads to a compact expression for the signal magnitude, and it suggests novel data acquisition and analysis methods. Double-pulsed DKI (DP-DKI) is demonstrated for in vivo mouse brain with d-PFG data obtained at 7 T. Copyright © 2014 John Wiley & Sons, Ltd.
    NMR in Biomedicine 02/2014; · 3.45 Impact Factor