Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

School of Chemistry and Chemical Engineering, Henan University of Technology, South Song Shan Road No. 140, Zhengzhou City 450001, PR China.
Journal of hazardous materials (Impact Factor: 4.14). 10/2009; 175(1-3):146-50. DOI: 10.1016/j.jhazmat.2009.09.141
Source: PubMed

ABSTRACT A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel solid phase extraction procedure for determination of copper, lead and iron in natural water and food samples has been established in the presented work. 1-Phenylthiosemicarbazide (1-PTSC) as ligand and Dowex Optipore L-493 resin as adsorbent were used in a mini chromatographic column. Various analytical conditions for the quantitative recoveries of analyte ions including pH, amounts of adsorbent, eluent, sample volume, etc. were investigated. The recovery values for analyte ions were higher than 95%. The determination of copper, lead and iron was performed by flame atomic absorption spectrometry. The influences of some alkali, alkali earth and transition metals on the recoveries of analyte ions were investigated. The preconcentration factor was 62.5. The limit of detections of the understudied analytes (k=3, N=21) were 0.64 μg L(-1) for copper, 0.55 μg L(-1) for lead and 0.82 μg L(-1) for iron. The relative standard deviation was found to be lower than 6%. The accuracy of the method was confirmed with certified reference material (GBW 07605 Tea). The method was successively applied for the determination of copper, lead and iron in water and some food samples including cheese, bread, baby food, pekmez, honey, milk and red wine after microwave digestion.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 02/2011; 49(2):458-63. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a first attempt, cloud point extraction (CPE) was developed to preconcentrate bisphenol A (BPA), α-naphthol and β-naphthol prior to performing capillary zone electrophoresis (CZE) analysis. The parameters influencing the CPE efficiency, such as Triton X-114 concentrations, pH value, extraction time and temperature were systematically evaluated. After diluting with acetonitrile, the surfactant-rich phase of CPE can be injected directly into the CE instrument. The CZE baseline separation was achieved with running buffer (pH 9.5) composed of 50mM sodium tetraborate in 30% (v/v) methanol, and an applied voltage of 25 kV. Under the optimized CPE and CZE conditions, an preconcentration factor of 50 times could be obtained and the limit of quantification for the three analytes were found to be 1.67 μg L(-1), 0.80 μg L(-1) and 0.67 μg L(-1) for BPA, α-naphthol and β-naphthol, respectively. The proposed methods have shown to be a green, rapid and effective approach for determination of three analytes present in river water samples.
    Talanta 07/2011; 85(1):488-92. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cloud-point extraction (CPE), an easy, safe, environmentally friendly, rapid and inexpensive methodology for preconcentration and separation of trace metals from aqueous solutions has recently become an attractive area of research and an alternative to liquid-liquid extraction. Moreover, it provides results comparable to those obtained with other separation techniques and has a greater potential to be explored in improving detection limits and other analytical characteristics over other methods. A few reviews have been published covering different aspects of the CPE procedure and its relevant applications, such as the phenomenon of clouding, the application in the extraction of trace inorganic and organic materials, as well as pesticides and protein substrates from different sources, or incorporation of CPE into an FIA system. This review focuses on general properties of the most frequently used organic ligands in cloud-point extraction and on literature data (from 2000 to 2012) concerning the use of modern techniques in determination of metal ions' content in various materials. The article is divided according to the class of organic ligands to be used in CPE.
    Talanta 06/2013; 110:202-28. · 3.50 Impact Factor