Article

Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS.

Cecil B Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 10/2009; 390(3):947-51. DOI: 10.1016/j.bbrc.2009.10.083
Source: PubMed

ABSTRACT With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFRalpha-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.

0 Bookmarks
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that the intrastriatal injection of the C-terminal domain of tetanus toxin (Hc-TeTx) protects the nigrostriatal-dopaminergic pathways and improves motor behavior in hemiparkinsonism-rat models caused by MPP(+) (1-methyl-4-phenylpyridinium). Here we have investigated the protective effects of the intramuscular application of the Hc-TeTx on motor asymmetry and neurodegeneration in the striatum of 6-hydroxydopamine (6-OHDA)-treated rats. Adult male rats were intramuscularly injected with the recombinant Hc-TeTx protein (0.1-20μg/kg, daily) 3days before the stereotaxic injection of 6-OHDA into the left striatum. Our results showed that the motor-improvement functions were extended for 4weeks in all Hc-TeTx-treated groups, obtaining the maximum performance with the highest dose of Hc-TeTx (20μg/kg). The improvements found were 97%, 87%, and 70% in the turning behavior, stepping test, and cylinder test, respectively. The striatal levels of dopamine and its metabolites did not vary compared to the control group. Moreover, the peripheral treatment with Hc-TeTx in rats prevents, for 30days, the neurodegeneration in the striatum caused by the toxicity of the 6-OHDA. Our results lead us to believe that the Hc-TeTx could be a potential therapeutic agent in pathologies caused by impairment of dopaminergic innervations such as Parkinson's disease.
    Neuroscience Research 09/2012; DOI:10.1016/j.neures.2012.08.006 · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In many neurological disorders strategies for a specific delivery of a biological activity from the periphery to the central nervous system (CNS) remains a considerable challenge for successful therapy. Reporter assays have established that the non-toxic C-fragment of tetanus toxin (TTC), provided either as protein or encoded by non-viral naked DNA plasmid, binds pre-synaptic motor neuron terminals and can facilitate the retrograde axonal transport of desired therapeutic molecules to the CNS. Alleviated symptoms in animal models of neurological diseases upon delivery of therapeutic molecules offer a hopeful prospect for TTC therapy. This review focuses on what has been learned on TTC-mediated neuronal targeting, and discusses the recent discovery that, instead of being merely a carrier molecule, TTC itself may well harbor neuroprotective properties.
    Toxins 11/2010; 2(11):2622-44. DOI:10.3390/toxins2112622 · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Protein delivery vectors can be grouped into two classes, those with specific membrane receptors undergoing conventional endocytosis and cell penetrating peptides (CPP) that have the capacity to cross cell or endosomal membranes. For both forms of vectors, translocation across a membrane is usually an inefficient process. In the current study, a novel vector combining the widely used CPP, Tat and the non-toxic neuronal binding domain of tetanus toxin (fragment C or TTC) was assessed for its capacity to deliver GFP as a test cargo protein to human neural progenitor cells (NPCs). These two functional membrane interacting domains dramatically enhanced internalization of the conjugated cargo protein. Tat-TTC-GFP was found to be bound or internalized at least 83-fold more than Tat-GFP and 33-fold more than TTC-GFP in NPCs by direct fluorimetry, and showed enhanced internalization by quantitative microscopy of 18 - and 14-fold, respectively. This preferential internalization was observed to be specific to neuronal cell types. Photochemical internalization (PCI) was utilized to facilitate escape of the endosome-sequestered proteins. The combined use of the Tat-TTC delivery vector with PCI led to both enhancement of neural cell type specific delivery to an endosomal target, followed by the option of efficient release to the cytosol.
    Journal of Drug Targeting 05/2013; DOI:10.3109/1061186X.2013.796954 · 2.72 Impact Factor