Article

Rituximab in the management of refractory myasthenia gravis.

Department of Neurology, Yale University School of Medicine, 40 Temple Street, Suite 6C, New Haven, Connecticut 06510, USA.
Muscle & Nerve (Impact Factor: 2.31). 10/2009; 41(3):375-8. DOI: 10.1002/mus.21521
Source: PubMed

ABSTRACT Myasthenia gravis (MG) is an immune-mediated disorder with a variable response to treatment. In this study, patients with refractory MG who were treated with rituximab were identified. A review of patients referred to the Yale Neuromuscular Clinic was performed. Patients with refractory MG who were treated with rituximab were reviewed for response to treatment. Patients who had muscle-specific kinase (MuSK(+)) or acetylcholine receptor (AChR(+)) antibodies were included. Six patients were identified who met the criteria described. All patients tolerated rituximab without side effects and had a reduced need for immunosuppressants and/or improvement in clinical function. Patients with refractory MG appeared to respond to rituximab in this small, retrospective study. This result suggests that a larger, prospective trial is indicated.

1 Bookmark
 · 
434 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: A subset of regulatory B cells in humans and mice has been defined functionally by their ability to produce interleukin (IL)-10. We characterized IL-10-producing B (B10) cells in myasthenia gravis (MG) patients and correlated them with disease activity and responsiveness to rituximab therapy. Methods: Frequencies of B10 cells from MG patients and healthy controls were monitored by fluorescence-activated cell sorting (FACS). Results: MG patients had fewer B10 cells than controls, which was associated with more severe disease status. Moreover, patients who responded well to rituximab therapy exhibited rapid repopulation of B10 cells, whereas in patients who did not respond well to rituximab, B10 cell repopulation was delayed. The kinetics of B10 cells were related to the responsiveness to rituximab in MG. Conclusion: We have characterized a specific subset of B10 cells in MG patients which may serve as a marker for MG activity and responsiveness to immune therapy. © 2013 Wiley Periodicals, Inc.
    Muscle & Nerve 07/2013; · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article provides a thorough overview of the current advances in diagnosis and therapy of myasthenia gravis (MG). Nowadays the term 'myasthenia gravis' includes heterogeneous autoimmune diseases with a postsynaptic defect of neuromuscular transmission as the common feature. Myasthenia gravis should be classified according to the antibody specificity (acetylcholine, MuSK, LRP4, seronegative), thymus histology (thymitis, thymoma, atrophy), age at onset (in children; < or > 40 years), and type of course (ocular or generalized). With optimal treatment, the prognosis is good in terms of daily functions, quality of life and survival. Symptomatic treatment with acetylcholine esterase inhibition is usually combined with immunosuppression. Azathioprine remains still the first choice for long-term immunosuppressive therapy. Alternative immunosuppressive options to azathioprine include ciclosporin, cyclophosphamide, methotrexate, mycophenolate mofetil, and tacrolimus. Rituximab is a promising new drug for severe generalized MG. Emerging therapy options include belimumab, eculizumab, and the granulocyte macrophage-colony-stimulating factor. One pilot study on etanercept has given disappointing results. For decades thymectomy has been performed in younger adults to improve non-paraneoplastic MG. However, controlled prospective studies on the suspected benefit of this surgical procedure are still lacking. In acute exacerbations including myasthenic crisis, intravenous immunoglobulin, plasmapheresis, and immunoadsorption are similarly effective.
    Clinical & Experimental Immunology 10/2013; · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: A subset of myasthenia gravis (MG) patients is refractory to standard therapies. Identifying the characteristics of this population is essential as newer treatment strategies emerge that may be more effective in this group. Objective: The aim of our study is to describe the clinical features of refractory MG patients and compare them to those of non-refractory patients. Methods: A retrospective chart review was completed of 128 MG patients referred to a tertiary neuromuscular clinic from 2003 to 2011. Patients were classified as refractory or non-refractory based on predefined criteria, and clinical features were compared. Results: Nineteen out of 128 patients were classified as refractory (14.8 percent). Compared to the non-refractory patients, the refractory patients were more likely to be younger at onset, female, thymomatous, and MuSK-antibody positive. Conclusion: Refractory MG patients represent a small but distinct group for whom exploring newer therapeutic approaches and immunopathologic differences is warranted.
    The Yale journal of biology and medicine 06/2013; 86(2):255-60.

Full-text

View
13 Downloads
Available from