Expression, purification and preliminary X-ray analysis of the Neisseria meningitidis outer membrane protein PorB.

Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
Acta Crystallographica Section F Structural Biology and Crystallization Communications (Impact Factor: 0.57). 10/2009; 65(Pt 10):996-1000. DOI: 10.1107/S1744309109032333
Source: PubMed

ABSTRACT The Neisseria meningitidis outer membrane protein PorB was expressed in Escherichia coli and purified from inclusion bodies by denaturation in urea followed by refolding in buffered LDAO on a size-exclusion column. PorB has been crystallized in three different crystal forms: C222, R32 and P6(3). The C222 crystal form may contain either one or two PorB monomers in the asymmetric unit, while both the R32 and P6(3) crystal forms contained one PorB monomer in the asymmetric unit. Of the three, the P6(3) crystal form had the best diffraction quality, yielding data extending to 2.3 A resolution.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
    Biology 09/2013; 2(3):1054-109. DOI:10.3390/biology2031054
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among all Neisseriae species, N. meningitidis and N. gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding. Strain-specific sequence variability in the surface-exposed loops of PorB which are potentially implicated in TLR2 binding, may explain the difference in TLR2-mediated cell activation in vitro by PorB homologs from the commensal N. lactamica and the pathogen N. meningitidis. Here, we report a comparative structural analysis of PorB from N. meningitidis serogroup B strain 8765 (63% sequence homology with PorB from N. meningitidis serogroup W135) and a mutant in which amino acid substitutions in the extracellular loop 7 lead to significantly reduced TLR2-dependent activity in vitro. We observe that this mutation both alters the loop conformation and causes dramatic changes of electrostatic surface charge, both of which may affect TLR2 recognition and signalling.
    Journal of Structural Biology 12/2013; 92(6). DOI:10.1016/j.jsb.2013.12.006 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To construct a rapid and high-throughput assay for identifying recombinant bacteria based on mass spectrometry. Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques were used to identify 12 recombinant proteins (10 of Yersinia pestis, 1 of Campylobacter jejuni and 1 of Helicobacter pylori). A classification model for the various phase of recombinant bacteria was established, optimized and validated, using MALDI-TOF MS-ClinProTools system. The differences in the peptide mass spectra were analyzed by using Biotyper and FlexAnalysis softwares. Models of GA, SNN, and QC were established. After optimizing the parameters, the GA recognition model showed good classification capabilities: RC=100%, mean CVA=98.7% (the CVA was 96.4% in phase 1, 100% in phase 2, 98.4% in phase 3, and 100% in phase 4, respectively) and PPV=95%. This model can be used to classify the bacteria and their recombinant, which only requires 3.7×103 cells for analysis. The total time needed is only 10 min from protein extraction to reporting the result for one sample. Furthermore, this assay can automatically detect and test 96 samples concurrently. A total of 48 specific peaks (9, 16, 9, and 14 for the four stages, respectively) was found in the various phase of recombinant bacteria. MALDI-TOF MS can be used as a fast, accurate, and high-throughput method to identify recombinant bacteria, which provide a new ideas not only for recombinant bacteria but also for the identification of mutant strains and bioterrorism pathogens.
    Biomedical and Environmental Sciences 04/2014; 27(4):250-8. DOI:10.3967/bes2014.048 · 1.26 Impact Factor


1 Download
Available from