Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis.

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, 6301 MSRB III, Ann Arbor, MI 48109-5642, USA.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.99). 10/2009; 181(3):254-63. DOI: 10.1164/rccm.200810-1615OC
Source: PubMed

ABSTRACT Ineffective repair of a damaged alveolar epithelium has been postulated to cause pulmonary fibrosis. In support of this theory, epithelial cell abnormalities, including hyperplasia, apoptosis, and persistent denudation of the alveolar basement membrane, are found in the lungs of humans with idiopathic pulmonary fibrosis and in animal models of fibrotic lung disease. Furthermore, mutations in genes that affect regenerative capacity or that cause injury/apoptosis of type II alveolar epithelial cells have been identified in familial forms of pulmonary fibrosis. Although these findings are compelling, there are no studies that demonstrate a direct role for the alveolar epithelium or, more specifically, type II cells in the scarring process.
To determine if a targeted injury to type II cells would result in pulmonary fibrosis.
A transgenic mouse was generated to express the human diphtheria toxin receptor on type II alveolar epithelial cells. Diphtheria toxin was administered to these animals to specifically target the type II epithelium for injury. Lung fibrosis was assessed by histology and hydroxyproline measurement.
Transgenic mice treated with diphtheria toxin developed an approximately twofold increase in their lung hydroxyproline content on Days 21 and 28 after diphtheria toxin treatment. The fibrosis developed in conjunction with type II cell injury. Histological evaluation revealed diffuse collagen deposition with patchy areas of more confluent scarring and associated alveolar contraction.
The development of lung fibrosis in the setting of type II cell injury in our model provides evidence for a causal link between the epithelial defects seen in idiopathic pulmonary fibrosis and the corresponding areas of scarring.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The airway epithelium serves as a biological barrier essential for host defense against inhaled pollutants. While chronic epithelial injury, commonly associated with chronic obstructive pulmonary disease and bronchiolitis obliterans syndrome, often results in airway fibrosis, limited animal models of airway fibrosis have been established. Club cells (Clara cells) in the small airways represent an important population of epithelial progenitor cells and also the principal site of localization of the cytochrome P-450 monooxygenase system, which metabolically activates xenobiotic chemicals such as naphthalene by converting them to toxic epoxide intermediates. We hypothesized that repeated exposure to naphthalene may cause prolonged loss of club cells, triggering aberrant local epithelial repair mechanisms that lead to peribronchial fibrosis. We administered intraperitoneal injections of naphthalene to C57/BL6J mice once a week for 14 consecutive weeks. Repeated club cell injury caused by naphthalene triggered regional hyperproliferation of epithelial progenitor cells, while other regions remained denuded or squamated, resulting in fibroblast proliferation and peribronchial collagen deposition associated with upregulation of the fibrogenic cytokines transforming growth factor-β and connective tissue growth factor. The total collagen content of the lung assessed by measurement of the hydroxyproline content was also increased after repeated exposure to naphthalene. These results lend support to the relevance of repeated injury of airway epithelial cells as a trigger for resting fibroblast proliferation and airway fibrosis. This model of airway fibrosis is simple and easy to reproduce, and may be expected to advance our understanding of the pathogenesis and potential treatment of airway fibrotic disorders.
    Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie 01/2014; DOI:10.1016/j.etp.2014.01.001 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-β-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-β-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT.
    The EMBO Journal 01/2013; DOI:10.1038/emboj.2012.336 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiotherapy is one of the major treatment regimes for thoracic malignancies, but can lead to severe lung complications including pneumonitis and fibrosis. Recent studies suggest that epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis. To investigate whether radiation can induce EMT in lung epithelial cells and also to understand the potential mechanism(s) associated with this change, rat alveolar type II lung epithelial RLE-6TN cells were irradiated with 8 Gy of (137)Cs γ-rays. Western blot and immunofluorescence analyses revealed a time-dependent decrease in E-cadherin with a concomitant increase in α-smooth muscle actin (α-SMA) and vimentin after radiation, suggesting that the epithelial cells acquired a mesenchymal-like morphology. Protein levels and nuclear translocation of Snail, the key inducer of EMT, were significantly elevated in the irradiated cells. Radiation also induced a time-dependent inactivation of glycogen synthase kinase-3β (GSK3β), an endogenous inhibitor of Snail. A marked increase in phosphorylation of ERK1/2, but not JNK or p38, was observed in irradiated RLE-6TN cells. Silencing ERK1/2 using siRNAs and the MEK/ERK inhibitor U0126 attenuated the radiation-induced phosphorylation of GSK3β and altered the protein levels of Snail, α-SMA, and E-cadherin in RLE-6TN cells. Preincubating RLE-6TN cells with N-acetylcysteine, an antioxidant, abolished the radiation-induced phosphorylation of ERK and altered protein levels of Snail, E-cadherin, and α-SMA. These findings reveal, for the first time, that radiation-induced EMT in alveolar type II epithelial cells is mediated by the ERK/GSK3β/Snail pathway.
    Free Radical Biology and Medicine 12/2011; 52(6):983-92. DOI:10.1016/j.freeradbiomed.2011.11.024 · 5.71 Impact Factor