Zinc protoporphyrin regulates cyclin D1 expression independent of heme oxygenase inhibition.

Division of Neonatology, Children's Hospital of Philadelphia, PA 19104, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 10/2009; 284(52):36302-11. DOI: 10.1074/jbc.M109.031641
Source: PubMed

ABSTRACT Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and up-regulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell proliferation and angiogenesis. Among these genes, CYCLIN D1 (CCND1) was specifically inhibited as were its mRNA and protein levels. Additionally, ZnPP inhibited CCND1 promoter activity through an Sp1 and Egr1 overlapping binding site (S/E). We confirmed that ZnPP modulated the S/E site, at least partially by associating with Sp1 and Egr1 proteins rather than direct binding to DNA targets. Furthermore, administration of ZnPP significantly inhibited cyclin D1 expression and progression of a B-cell leukemia/lymphoma 1 tumor in mice by preferentially targeting tumor cells. These observations show HO independent effects of ZnPP on cyclin D1 expression and tumorigenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor-κB (NF-κB) regulates cellular responses to inflammation and aging, and alterations in NF-κB signaling underlie the pathogenesis of multiple human diseases. Effective clinical therapeutics targeting this pathway remain unavailable. In primary human keratinocytes, we found that hypochlorite (HOCl) reversibly inhibited the expression of CCL2 and SOD2, two NF-κB-dependent genes. In cultured cells, HOCl inhibited the activity of inhibitor of NF-κB kinase (IKK), a key regulator of NF-κB activation, by oxidizing cysteine residues Cys114 and Cys115. In NF-κB reporter mice, topical HOCl reduced LPS-induced NF-κB signaling in skin. We further evaluated topical HOCl use in two mouse models of NF-κB-driven epidermal disease. For mice with acute radiation dermatitis, topical HOCl inhibited the expression of NF-κB-dependent genes, decreased disease severity, and prevented skin ulceration. In aged mice, topical HOCl attenuated age-dependent production of p16INK4a and expression of the DNA repair gene Rad50. Additionally, skin of aged HOCl-treated mice acquired enhanced epidermal thickness and proliferation, comparable to skin in juvenile animals. These data suggest that topical HOCl reduces NF-κB-mediated epidermal pathology in radiation dermatitis and skin aging through IKK modulation and motivate the exploration of HOCl use for clinical aims.
    The Journal of clinical investigation 11/2013; DOI:10.1172/JCI70895 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of DHA on HO-1 expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 hours of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-Acetyl Cysteine (NAC), suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA’s induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA induced HO-1 expression in human malignant cells.
    The Journal of nutritional biochemistry 05/2014; DOI:10.1016/j.jnutbio.2013.12.011 · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The expression of heme oxygenase-1 (HO-1) has been shown to be up-regulated in colorectal cancer (CRC), but the role it plays in this cancer type has not yet been addressed. The aims of this study have been to analyze HO-1 expression in human invasive CRC, evaluate its correlation with clinical and histo-pathological parameters and to investigate the mechanisms through which the enzyme influences tumor progression. We confirmed that HO-1 was over-expressed in human invasive CRC and found that the expression of the enzyme was associated with a longer overall survival time. In addition, we observed in a chemically-induced CRC animal model that total and nuclear HO-1 expression increases with tumor progression. Our investigation of the mechanisms involved in HO-1 action in CRC demonstrates that the protein reduces cell viability through induction of cell cycle arrest and apoptosis and, importantly, that a functional p53 tumor suppressor protein is required for these effects. This reduction in cell viability is accompanied by modulation of the levels of p21, p27, and cyclin D1 and by modulation of Akt and PKC pathways. Altogether, our results demonstrate an antitumoral role of HO-1 and points to the importance of p53 status in this antitumor activity.
    Experimental and Molecular Pathology 12/2014; 97(3). DOI:10.1016/j.yexmp.2014.09.012 · 2.88 Impact Factor