Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells.

Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
Molecular Cancer (Impact Factor: 5.4). 10/2009; 8:90. DOI: 10.1186/1476-4598-8-90
Source: PubMed

ABSTRACT beta-catenin mutations that constitutively activate the canonical Wnt signaling have been observed in a subset of hepatocellular carcinomas (HCCs). These mutations are associated with chromosomal stability, low histological grade, low tumor invasion and better patient survival. We hypothesized that canonical Wnt signaling is selectively activated in well-differentiated, but repressed in poorly differentiated HCCs. To this aim, we characterized differentiation status of HCC cell lines and compared their expression status of Wnt pathway genes, and explored their activity of canonical Wnt signaling.
We classified human HCC cell lines into "well-differentiated" and "poorly differentiated" subtypes, based on the expression of hepatocyte lineage, epithelial and mesenchymal markers. Poorly differentiated cell lines lost epithelial and hepatocyte lineage markers, and overexpressed mesenchymal markers. Also, they were highly motile and invasive. We compared the expression of 45 Wnt pathway genes between two subtypes. TCF1 and TCF4 factors, and LRP5 and LRP6 co-receptors were ubiquitously expressed. Likewise, six Frizzled receptors, and canonical Wnt3 ligand were expressed in both subtypes. In contrast, canonical ligand Wnt8b and noncanonical ligands Wnt4, Wnt5a, Wnt5b and Wnt7b were expressed selectively in well- and poorly differentiated cell lines, respectively. Canonical Wnt signaling activity, as tested by a TCF reporter assay was detected in 80% of well-differentiated, contrary to 14% of poorly differentiated cell lines. TCF activity generated by ectopic mutant beta-catenin was weak in poorly differentiated SNU449 cell line, suggesting a repressive mechanism. We tested Wnt5a as a candidate antagonist. It strongly inhibited canonical Wnt signaling that is activated by mutant beta-catenin in HCC cell lines.
Differential expression of Wnt ligands in HCC cells is associated with selective activation of canonical Wnt signaling in well-differentiated, and its repression in poorly differentiated cell lines. One potential mechanism of repression involved Wnt5a, acting as an antagonist of canonical Wnt signaling. Our observations support the hypothesis that Wnt pathway is selectively activated or repressed depending on differentiation status of HCC cells. We propose that canonical and noncanonical Wnt pathways have complementary roles in HCC, where the canonical signaling contributes to tumor initiation, and noncanonical signaling to tumor progression.

Download full-text


Available from: Kamil Can Akcali, Jun 24, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In colorectal cancer (CRC), tumour microsatellite instability (MSI) status and CpG island methylator phenotype (CIMP) status are indicators of patient outcome, but the molecular events that give rise to these outcomes remain largely unknown. Wnt5a is a critical regulator of non-canonical Wnt activity and promoter hypermethylation of this gene has emerging prognostic roles in CRC; however the frequency and prognostic significance of this epigenetic event have not been explored in the context of colorectal tumour subtype. Consequently, we investigated the frequency and prognostic significance of Wnt5a methylation in a large cohort of MSI-stratified CRCs. Methylation was quantified in a large cohort of 1232 colorectal carcinomas from two clinically distinct populations from Canada. Associations were examined between methylation status and clinicopathlogical features, including tumour MSI status, BRAF V600E mutation, and patient survival. In Ontario, Wnt5a methylation was strongly associated with MSI tumours after adjustment for age, sex, and tumour location (odds ratio (OR)=4.2, 95% confidence interval (CI)=2.4-7.4, P<10(-6)) and with BRAF V600E mutation, a marker of CIMP (OR=12.3, 95% CI=6.9-21.7, P<10(-17)), but was not associated with patient survival. Concordant results were obtained in Newfoundland. Methylation of Wnt5a is associated with distinct tumour subtypes, strengthening the evidence of an epigenetic-mediated Wnt bias in CRC.
    British Journal of Cancer 06/2011; 104(12):1906-12. DOI:10.1038/bjc.2011.165 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt10b is a member of the Wnt ligand gene family that encodes for secreted proteins, which activate the ancient and highly conserved Wnt signalling cascade. The Wnt pathway has been shown to be essential for embryonic development, tissue integrity, and stem cell activity, but if deregulated, also causes disease such as cancer. Although the 19 different Wnt ligands found in both human and mouse can activate several branches of the Wnt pathway, WNT10B specifically activates canonical Wnt/β-catenin signalling and thus triggers β-catenin/LEF/TCF-mediated transcriptional programs. In this review, we highlight the unique functions of WNT10B and mechanisms of how WNT10B acts in the immune system, mammary gland, adipose tissue, bone and skin. In these organs, WNT10B has been well established to be involved in signalling networks controlling stemness, pluripotency and cell fate decisions. Deregulation of these processes causes diseases such as breast cancer, obesity and osteoporosis. Compelling evidence suggests that WNT10B is a valuable candidate for the development of therapeutic regimens for human diseases.
    Acta Physiologica 03/2011; 204(1):34-51. DOI:10.1111/j.1748-1716.2011.02296.x · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Protoporphyrin IX (PPIX) has been used for photodynamic therapy. Mesenchymal cancer cells adapt to tumor microenvironments for growth and metastasis possibly in association with miRNA dysregulation. In view of the effect of PPIX on cancer-related genes, and its potential to inhibit tumor growth and migration/invasion, this study investigated whether PPIX enables mesenchymal liver tumor to restore dysregulated miRNAs, and if so, whether it sensitizes the cancer cells to chemotherapy. In addition, we explored new target(s) of the miRNA(s) that contribute to the anti-cancer effects. Of the ten miRNAs predicted by the 3'-UTR of HIF-1α mRNA, PPIX treatment increased miR-199a-5p, leading to the inhibition of E2F3 expression which is upregulated in mesenchymal liver tumor. miR-199a-5p levels were downregulated in HCC with E2F3 overexpression. An approach modulating epithelial-mesenchymal transition provided the expected changes in miR-199a-5p and E2F3 in vivo. PPIX prevented tumor cell growth and migration/invasion, and had a synergistic anti-cancer effect when combined with chemotherapeutics. In a xenograft model, PPIX treatment decreased overall growth and average tumor volume, which paralleled E2F3 inhibition. Overall, PPIX inhibited growth advantage and migratory ability of cancer cells and sensitized mesenchymal liver tumor cells to chemotherapeutics.
    Oncotarget 01/2015; · 6.63 Impact Factor