Remission of Major Depression Under Deep Brain Stimulation of the Lateral Habenula in a Therapy-Refractory Patient

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, D-68159 Mannheim, Germany.
Biological psychiatry (Impact Factor: 10.26). 10/2009; 67(2):e9-e11. DOI: 10.1016/j.biopsych.2009.08.027
Source: PubMed
Download full-text


Available from: Andreas Meyer-Lindenberg, Nov 10, 2015
    • "In humans, patients with recurrent MDD showed increased habenular activity after tryptophan depletion (Morris et al., 1999; Roiser et al., 2009). Moreover, a patient who underwent deep brain stimulation of Hb for treatment-resistant depression presented a full recovery, presumably as the result of suppressing the habenular functional hyperactivity (Sartorius et al., 2010). A recent functional neuroimaging study revealed a differential pattern of habenular activation during aversive conditioning in non-medicated patients with MDD, with no differences in baseline blood flow or Hb volume compared to healthy subjects (Lawson et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The habenula (Hb) can play an important role in major depressive disorder (MDD) as it is a key node between fronto-limbic areas and midbrain monoaminergic structures. In vivo neuroimaging studies have shown reductions in Hb volume in a post-mortem sample of patients with affective disorders but findings in unipolar MDD are not consistent. The current study aimed to investigate whether the Hb volume differed between patients with different stages of unipolar MDD and healthy subjects. We also explored differences in grey (GM) and white matter (WM) volumes and potential age and gender effects. High-resolution images were acquired using a 3T-scanner from 95 participants (21 with first-episode MDD; 20 with remitted-recurrent MDD; 20 with treatment-resistant/chronic MDD; and 34 healthy controls).Two researchers blinded to clinical data manually delineated habenular nuclei, with excellent inter-rater agreement. Multivariate analysis of covariance revealed a significant group-by-gender interaction (F9,258=2.22; p=0.02). Univariate effects emerged for Hb-WM volumes (F3,86=3.12; p=0.03) but not for total Hb volumes (F3,86=0.59; p=0.62) or Hb-GM volumes (F3,86=2.01; p=0.12). Women with a first-episode MDD had greater Hb-WM volumes than healthy controls and patients with treatment-resistant/chronic MDD (p<0.01). These findings remained unaltered when controlled for total intracranial volume or medication load. Our results do not support decreased total Hb volumes in unipolar MDD, in patients with first-episode or in patients with long-lasting recurrent or chronic depression. However, the increased Hb-WM volume we observed in women with a first-episode suggests involvement of Hb and its projections in early stages of the recovery process and in the course of MDD.
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 09/2015; 25(11). DOI:10.1016/j.euroneuro.2015.08.009 · 4.37 Impact Factor
  • Source
    • "Increased activity in the lateral habenula (induced e.g., by stress) can lead to an increase in the salience of aversive stimuli and a decrease in the saliency of appetitive stimuli, and as such offers a plausible neurobiological substrate for the negative information-processing bias seen in e.g., depressed patients (Disner et al., 2011; Willner et al., 2013). Dysfunctions of this limbic-striatal relay nucleus have been implicated in depression and schizophrenia (Hikosaka et al., 2008), and recently beneficial effects were reported in a treatment-resistant depressed patient receiving deep brain stimulation in this target (Sartorius et al., 2010). Overall, more studies are needed before we can make conclusive statements regarding the role of wanting, liking, and learning processes in anhedonia in psychiatric disorders. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anhedonia, the lack of pleasure, has been shown to be a critical feature of a range of psychiatric disorders. Yet, it is currently measured primarily through subjective self-reports and as such has been difficult to submit to rigorous scientific analysis. New insights from affective neuroscience hold considerable promise in improving our understanding of anhedonia and for providing useful objective behavioral measures to complement traditional self-report measures, potentially leading to better diagnoses and novel treatments. Here, we review the state-of-the-art of hedonia research and specifically the established mechanisms of wanting, liking, and learning. Based on this framework we propose to conceptualize anhedonia as impairments in some or all of these processes, thereby departing from the longstanding view of anhedonia as solely reduced subjective experience of pleasure. We discuss how deficits in each of the reward components can lead to different expressions, or subtypes, of anhedonia affording novel ways of measurement. Specifically, we review evidence suggesting that patients suffering from depression and schizophrenia show impairments in wanting and learning, while some aspects of conscious liking seem surprisingly intact. Furthermore, the evidence suggests that anhedonia is heterogeneous across psychiatric disorders, depending on which parts of the pleasure networks are most affected. This in turn has implications for diagnosis and treatment of anhedonia.
    Frontiers in Behavioral Neuroscience 03/2015; 9. DOI:10.3389/fnbeh.2015.00049 · 3.27 Impact Factor
  • Source
    • "Importantly, as the optic fiber in these experiments was targeted to ChR2+ somata in the mPFC, the exact projections that exerted the antidepressant-like effects remain to be determined by projectionspecific targeting. Warden et al. examined the role of mPFC efferents in depressive behavior, with a focus on projections to the dorsal raphe nucleus (DRN) and the lateral habenula (LHb; Warden et al., 2012), regions that are heavily implicated in MDD (Sartorius et al., 2010; Willner et al., 2013; Albert et al., 2014; Mahar et al., 2014). The mPFC-DRN projection is of particular interest, as the antidepressant effect of vmPFC DBS in rats is accompanied by structural and functional alterations in serotoninergic DRN neurons (Veerakumar et al., 2014) and it is completely abolished following serotoninergic depletion in the DRN (Hamani et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.
    Frontiers in Systems Neuroscience 12/2014; 8:230. DOI:10.3389/fnsys.2014.00230
Show more