Subgenual prefrontal cortex activity predicts individual differences in hypothalamic-pituitary-adrenal activity across different contexts.

Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
Biological psychiatry (Impact Factor: 8.93). 10/2009; 67(2):175-81. DOI: 10.1016/j.biopsych.2009.07.039
Source: PubMed

ABSTRACT Hypothalamic-pituitary-adrenal (HPA) system activation is adaptive in response to stress, and HPA dysregulation occurs in stress-related psychopathology. It is important to understand the mechanisms that modulate HPA output, yet few studies have addressed the neural circuitry associated with HPA regulation in primates and humans. Using high-resolution F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) in rhesus monkeys, we assessed the relation between individual differences in brain activity and HPA function across multiple contexts that varied in stressfulness.
Using a logical AND conjunctions analysis, we assessed cortisol and brain metabolic activity with FDG-PET in 35 adolescent rhesus monkeys exposed to two threat and two home-cage conditions. To test the robustness of our findings, we used similar methods in an archival data set. In this data set, brain metabolic activity and cortisol were assessed in 17 adolescent male rhesus monkeys that were exposed to three stress-related contexts.
Results from the two studies revealed that subgenual prefrontal cortex (PFC) metabolism (Brodmann's area 25/24) consistently predicted individual differences in plasma cortisol concentrations regardless of the context in which brain activity and cortisol were assessed.
These findings suggest that activation in subgenual PFC may be related to HPA output across a variety of contexts (including familiar settings and novel or threatening situations). Individuals prone to elevated subgenual PFC activity across multiple contexts may be individuals who consistently show heightened cortisol and may be at risk for stress-related HPA dysregulation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.
    Frontiers in Human Neuroscience 01/2013; 7:428. · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is a debilitating disease with symptoms like persistent depressed mood and sleep disturbances. The prefrontal cortex (PFC) has been implicated as an important structure in the neural circuitry of MDD, with pronounced abnormalities in blood flow and metabolic activity in PFC subregions, including the subgenual cingulate cortex (sgACC, or Brodmann area 25). In addition, deep brain stimulation in the sgACC has recently been shown to alleviate treatment-resistant depression. Depressed patients also show characteristic changes in sleep: insomnia, increased rapid-eye-movement (REM) sleep and shortened REM sleep latency. We hypothesized that sleep changes and depressive behavior may be a consequence of the abnormal PFC activity in MDD. The rat ventromedial PFC (vmPFC, prelimbic and infralimbic cortices) is considered to be the homolog of the human sgACC, so we examined the effect of excitotic lesions in the vmPFC on sleep-wake and depressive behavior. We also made lesions in the adjacent dorsal region (dmPFC) to compare the effect of this similar but distinct mPFC region. We found that both dmPFC and vmPFC lesions led to increased REM sleep, but only vmPFC-lesioned animals displayed increased sleep fragmentation, shortened REM latency and increased immobility in the forced swim test. Anatomic tracing suggests that the mPFC projects to the pontine REM-off neurons that interact with REM-on neurons in the dorsal pons. These results support our hypothesis that neuronal loss in the rat vmPFC resembles several characteristics of MDD and may be a critical area for modulating both mood and sleep.
    Neuropharmacology 07/2014; · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have provided important information regarding the anatomy, development and functional organization of the 5-HT system and the alterations in this system that are present within the brain of the suicidal patient. There is also a growing interest in genetic factors associated with suicide, since these may lead to the emergence of personality traits that prove to be long-term predictors of suicidal behaviour. This review will focus on presenting the scientific literature on the role of the serotonergic system in suicidal behaviour as well as dysfunctional attitudes and personality traits associated with the suicidal patient. The association of the serotonin transporter gene, the 5-HT2 receptors and its metabolite 5-hydroxyindoleacetic acid with suicidal behaviour and animal models that may capture the complexity of suicidal behaviour will be discussed. Finally, the relationship between neurobiological models and psychotherapeutic interventions for suicide prevention will be considered with a focus on Schema Therapy (an approach that has shown particular promise in the treatment of suicidal individuals with personality disorders), aiming to invite the reader to integrate some aspects of the neurobiology of human suicidal behaviour into a model of suicide that can be used in a clinical encounter.
    Experimental Brain Research 08/2013; · 2.17 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014