Article

The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF).

Analytical Biochemistry, Department of Pharmacy, University of Groningen, Groningen, The Netherlands.
Journal of Proteome Research (Impact Factor: 5.06). 11/2009; 8(12):5511-22. DOI: 10.1021/pr9005876
Source: PubMed

ABSTRACT To standardize the use of cerebrospinal fluid (CSF) for biomarker research, a set of stability studies have been performed on porcine samples to investigate the influence of common sample handling procedures on proteins, peptides, metabolites and free amino acids. This study focuses at the effect on proteins and peptides, analyzed by applying label-free quantitation using microfluidics nanoscale liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (chipLC-MS) as well as matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS) and Orbitrap LC-MS/MS to trypsin-digested CSF samples. The factors assessed were a 30 or 120 min time delay at room temperature before storage at -80 degrees C after the collection of CSF in order to mimic potential delays in the clinic (delayed storage), storage at 4 degrees C after trypsin digestion to mimic the time that samples remain in the cooled autosampler of the analyzer, and repeated freeze-thaw cycles to mimic storage and handling procedures in the laboratory. The delayed storage factor was also analyzed by gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) for changes of metabolites and free amino acids, respectively. Our results show that repeated freeze/thawing introduced changes in transthyretin peptide levels. The trypsin digested samples left at 4 degrees C in the autosampler showed a time-dependent decrease of peak areas for peptides from prostaglandin D-synthase and serotransferrin. Delayed storage of CSF led to changes in prostaglandin D-synthase derived peptides as well as to increased levels of certain amino acids and metabolites. The changes of metabolites, amino acids and proteins in the delayed storage study appear to be related to remaining white blood cells. Our recommendations are to centrifuge CSF samples immediately after collection to remove white blood cells, aliquot, and then snap-freeze the supernatant in liquid nitrogen for storage at -80 degrees C. Preferably samples should not be left in the autosampler for more than 24 h and freeze/thaw cycles should be avoided if at all possible.

2 Bookmarks
 · 
267 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early detection is the most effective way to improve the clinical outcome of malignancies. Although some tumor markers are now widely used in the clinic, their sensitivity and specificity are still not satisfactory. Thus, there is an urgent requirement for the discovery of new tumor markers. By measuring holistic endogenous metabolites, metabolomics can be used for delineating metabolic networks and discovering metabolic markers. Chromatography-mass spectrometry is the most widely used tool for metabolomics and has shown great potential for biomarker screening. In this review, the authors summarize: recent advances in the protocols and methodologies of chromatography-mass spectrometry-based metabolomics in the discovery of tumor markers; recently identified tumor metabolic markers for primary liver cancer, gynecologic cancer and genitourinary cancer and their applications; and commonly encountered problems in the translational research of metabolic markers.
    Expert Review of Molecular Diagnostics 05/2013; 13(4):339-48. · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Information regarding the variability of metabolite levels over time in an individual is required to estimate the reproducibility of metabolite measurements. In intervention studies, it is critical to appropriately judge changes that are elicited by any kind of intervention. The pre-analytic phase (collection, transport and sample processing) is a particularly important component of data quality in multi-center studies. Reliability of metabolites (within-and between-person variance, intraclass correlation coefficient) and stability (shipment simulation at different temperatures, use of gel-barrier collection tubes, freeze-thaw cycles) were analyzed in fasting serum and plasma samples of 22 healthy human subjects using a targeted LC-MS approach. Reliability of metabolite measurements was higher in serum compared to plasma samples and was good in most saturated short-and medium-chain acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids and hexose. The majority of metabolites were stable for 24 h on cool packs and at room temperature in non-centrifuged tubes. Plasma and serum metabolite stability showed good coherence. Serum metabolite concentrations were mostly unaffected by tube type and one or two freeze-thaw cycles. A single time point measurement is assumed to be sufficient for a targeted metabolomics analysis of most metabolites. For shipment, samples should ideally be separated and frozen immediately after collection, as some amino acids and biogenic amines become unstable within 3 h on cool packs. Serum gel-barrier tubes can be used safely for this process as they have no effect on concentration in most metabolites. Shipment of non-centrifuged samples on cool packs is a cost-efficient alternative for most metabolites.
    PLoS ONE 01/2014; 9(2):e89728. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Discovery of clinically relevant biomarkers for diseases has revealed metabolomics has potential advantages that classical diagnostic approaches do not. The great asset of metabolomics is that it enables assessment of global metabolic profiles of biofluids and discovery of biomarkers distinguishing disease status, with the possibility of enhancing clinical diagnostics. Most current clinical chemistry tests rely on old technology, and are neither sensitive nor specific for a particular disease. Clinical diagnosis of major neurological disorders, for example Alzheimer's disease and Parkinson's disease, on the basis of current clinical criteria is unsatisfactory. Emerging metabolomics is a powerful technique for discovering novel biomarkers and biochemical pathways to improve diagnosis, and for determination of prognosis and therapy. Identifying multiple novel biomarkers for neurological diseases has been greatly enhanced with recent advances in metabolomics that are more accurate than routine clinical practice. Cerebrospinal fluid (CSF), which is known to be a rich source of small-molecule biomarkers for neurological and neurodegenerative diseases, and is in close contact with diseased areas in neurological disorders, could potentially be used for disease diagnosis. Metabolomics will drive CSF analysis, facilitate and improve the development of disease treatment, and result in great benefits to public health in the long-term. This review covers different aspects of CSF metabolomics and discusses their significance in the postgenomic era, emphasizing the potential importance of endogenous small-molecule metabolites in this emerging field.
    Analytical and Bioanalytical Chemistry 05/2013; · 3.66 Impact Factor

Full-text

View
110 Downloads
Available from
May 28, 2014