Article

Antiretroviral therapy in macrophages: implication for HIV eradication.

Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
Antiviral chemistry & chemotherapy 01/2009; 20(2):63-78. DOI: 10.3851/IMP1374
Source: PubMed

ABSTRACT HIV type-1 (HIV-1) accounts for more than 25 million deaths and nearly 40 million people are infected worldwide. A significant obstacle in clearing virus from infected individuals is latently infected viral reservoirs. Latent HIV-1 can emerge with recrudescence as a productive infection later in disease progression and could provide a source for the emergence of resistant HIV-1. It is widely recognized that macrophages represent a latently infected viral reservoir and are a significant and critical HIV-1 target cell in vivo. Macrophages can be divided into multiple subsets of macrophage-like cells, all of which are susceptible to HIV-1 infection, including dendritic cells, Langerhans cells, alveolar macrophages, mucosal macrophages and microglial cells. Current antiretroviral therapy (ART) often displays differential antiviral activity in macrophages relative to CD4(+) T-lymphocytes. Significant work has been performed to establish antiviral activity of many clinically approved ART in macrophages; however, a direct link between antiviral activity and specific mechanisms responsible for these antiviral effects are incompletely understood. This review identifies many understudied areas of research, along with topics for further research in the field of HIV therapy and eradication. Discussion focuses upon the known cellular pharmacology and antiviral activity of antiretroviral agents in macrophages and its relationship to latency, chronic HIV-1 infection and therapeutic strategies to eradicate systemic HIV-1 infection.

1 Bookmark
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages serve as a depot for HIV type-1 (HIV-1) in the central nervous system. To efficiently target macrophages, we developed nanocarriers for potential brain delivery of activated nucleoside reverse transcriptase inhibitors (NRTIs) called nano-NRTIs. Nanogel carriers consisting of poly(ethylene glycol) (PEG)- or Pluronic-polyethylenimine (PEI) biodegradable networks, star PEG-PEI or poly(amidoamine) dendrimer-PEI-PEG dendritic networks, as well as nanogels decorated with brain-targeting peptide molecules, specifically binding to the apolipoprotein E receptor, were synthesized and evaluated. Nano-NRTIs were obtained by mixing aqueous solutions of zidovudine 5'-triphosphate or didanosine 5'-triphosphate and nanocarriers, followed by freeze-drying. Intracellular accumulation, cytotoxicity and antiviral activity of nano-NRTIs were monitored in monocyte-derived macrophages (MDMs). HIV-1 viral activity in infected MDMs was measured by a reverse transcriptase activity assay following treatment with nano-NRTIs. Mitochondrial DNA depletion in MDMs and human HepG2 cells was assessed by quantitative PCR. Nanogels were efficiently captured by MDMs and demonstrated low cytotoxicity, and no antiviral activity without drugs. All nano-NRTIs demonstrated high efficacy of HIV-1 inhibition at drug levels as low as 1 μmol/l, representing a 4.9- to 14-fold decrease in 90% effective drug concentrations as compared with NRTIs, whereas 50% cytotoxicity effects started at 200× higher concentrations. Nano-NRTIs with a core-shell structure and decorated with brain-targeting peptides displayed the highest antiviral efficacy. Mitochondrial DNA depletion, a major cause of NRTI neurotoxicity, was reduced threefold compared with NRTIs at application of selected nano-NRTIs. Nano-NRTIs demonstrated a promising antiviral efficacy against HIV-1 in MDMs and showed strong potential as nanocarriers for delivery of antiviral drugs to macrophages harbouring in the brain.
    Antiviral chemistry & chemotherapy 01/2010; 21(1):1-14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cross-resistance profiles of elvitegravir and dolutegravir on raltegravir-resistant variants is still controversial or not available in macrophages and lack extensive evaluations on wide panels of clonal variants. Thus, a complete evaluation in parallel with all currently available integrase inhibitors (INIs) was performed. The integrase coding region was RT-PCR-amplified from patient-derived plasma samples and cloned into an HIV-1 molecular clone lacking the integrase region. Twenty recombinant viruses bearing mutations to all primary pathways of resistance to raltegravir were phenotypically evaluated with each integrase inhibitor in freshly purified CD4+ T cells or monocyte-derived macrophages. Y143R single mutants conferred a higher level of raltegravir resistance in macrophages [fold change (FC) 47.7-60.24] compared with CD4+ T cells (FC 9.55-11.56). All other combinations had similar effects on viral susceptibility to raltegravir in both cell types. Elvitegravir displayed a similar behaviour both in lymphocytes and macrophages with all the tested patterns. When compared with raltegravir, none to modest increases in resistance were observed for the Y143R/C pathways. Dolutegravir maintained its activity and cross-resistance profile in macrophages. Only Q148H/R variants had a reduced level of susceptibility (FC 5.48-18.64). No variations were observed for the Y143R/C (+/-T97A) or N155H variants. All INIs showed comparable antiretroviral activity in both cell types even if single mutations were associated with a different level of susceptibility in vitro to raltegravir and elvitegravir in macrophages. In particular, dolutegravir was capable of inhibiting with similar potency infection of raltegravir-resistant variants with Y143 or N155 pathways in both HIV-1 major cell reservoirs.
    Journal of Antimicrobial Chemotherapy 06/2013; · 5.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been a shift towards HIV-1 eradication research in the last three years, yet much is still unknown about the precise role that macrophages will play in any such strategy. This review attempts to summarize the latest data on this subject. A new generation of histone deacetylase inhibitors, ITF2357, belinostat, givinostat, panobinostat, and the cancer drug JQ1, have been shown to induce viral reactivation in a monocyte cell line. In macrophages chronically infected with HIV-1 in vitro, drugs blocking pre-integration steps have demonstrated poor efficacy in controlling viral replication in comparison to protease inhibitors, thus questioning whether drugs can control this reservoir following histone deacetylase inhibition. Finally, non-human primate data suggest that CD8+ T cells may not be able to clear infected macrophages. Given these data highlighting the barriers to addressing the macrophage reservoir, functional rather than sterilizing cure may be a realistic goal. More research on macrophages is needed and animal models may prove useful in future HIV-1 eradication studies by offering a clinically relevant way to study macrophage infection in vivo.
    Current Opinion in Infectious Diseases 10/2013; · 5.03 Impact Factor

Full-text (2 Sources)

View
40 Downloads
Available from
May 26, 2014