Isoflurane-Induced Changes in Righting Response and Breathing Are Modulated by RGS Proteins

Departments of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109-5615, USA.
Anesthesia and analgesia (Impact Factor: 3.42). 11/2009; 109(5):1500-5. DOI: 10.1213/ANE.0b013e3181ba7815
Source: PubMed

ABSTRACT Recent evidence suggests that G protein-coupled receptors, especially those linked to G(alpha)(i), contribute to the mechanisms of anesthetic action. Regulator of G protein signaling (RGS) proteins bind to activated G(alpha)(i) and inhibit signal transduction. Genomic knock-in mice with an RGS-insensitive G(alpha)(i2) G184S (G(alpha)(i2) GS) allele exhibit enhanced G(alpha)(i2) signaling and provide a novel approach for investigating the role of G(alpha)(i2) signaling and RGS proteins in general anesthesia.
We anesthetized homozygous G(alpha)(i2) GS/GS and wild-type (WT) mice with isoflurane and quantified time (in seconds) to loss and resumption of righting response. During recovery from isoflurane anesthesia, breathing was quantified in a plethysmography chamber for both lines of mice.
G(alpha)(i2) GS/GS mice required significantly less time for loss of righting and significantly more time for resumption of righting than WT mice. During recovery from isoflurane anesthesia, G(alpha)(i2) GS/GS mice exhibited significantly greater respiratory depression. Poincaré analyses show that GS/GS mice have diminished respiratory variability compared with WT mice.
Modulation of G(alpha)(i2) signaling by RGS proteins alters loss and resumption of wakefulness and state-dependent changes in breathing.


Available from: Xinyan Huang, Mar 05, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Serotonin modulates many processes through a family of seven serotonin receptors. However, no studies have screened for interactions between general anesthetics currently in clinical use and serotonergic G-protein-coupled receptors (GPCRs). Given that both intravenous and inhalational anesthetics have been shown to target other classes of GPCRs, we hypothesized that general anesthetics might interact directly with some serotonin receptors and thus modify their function. Methods: Radioligand binding assays were performed to screen serotonin receptors for interactions with propofol and isoflurane as well as for affinity determinations. Docking calculations using the crystal structure of 5-HT2B were performed to computationally confirm the binding assay results and locate anesthetic binding sites. Results: The 5-HT2B class of receptors interacted significantly with both propofol and isoflurane in the primary screen. The affinities for isoflurane and propofol were determined to be 7.78 and .95 μM, respectively, which were at or below the clinical concentrations for both anesthetics. The estimated free energy derived from docking calculations for propofol (-6.70 kcal/mol) and isoflurane (-5.10 kcal/mol) correlated with affinities from the binding assay. The anesthetics were predicted to dock at a pharmacologically relevant binding site of 5HT2B. Conclusions: The molecular interactions between propofol and isoflurane with the 5-HT2B class of receptors were discovered and characterized. This finding implicates the serotonergic GPCRs as potential anesthetic targets.
    Journal of biomolecular Structure & Dynamics 12/2013; DOI:10.1080/07391102.2013.869483 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent clinical studies have suggested that there is an increased risk of Alzheimer's disease (AD) in patients undergoing surgical interventions, but it is unknown whether this effect is related to anesthesia, cardiovascular complications of surgery, or associated conditions such as hypothermia. In addition, many patients, especially the elderly, present persistent post-operative cognitive deterioration after anesthesia, without clear complications during surgery. Experimental studies in animals may be helpful to dissect the pathogenic role of the different factors involved in surgery. Here, we review studies on the effects of anesthesia on neuronal function performed in tissue culture and in experimental animals. Several studies have shown that a small inhalation of anesthetics induces activation of caspases and cell toxicity on glioma and pheochromocitoma cells in culture, which is prevented by treatment with the metal chelating agent clioquinol. Exposure of old rodents to anesthesia produced memory deficits and increased levels of amyloid-β (Aβ) peptide and phosphorylated tau in brain. The effects of long term or short term repetitive exposure to small molecular weight anesthetics are more severe in transgenic AβPPswe than in wild type mice. In the former, low molecular weight increased the number of TUNEL(+) apoptotic cells and the ratio of pro-apoptotic proteins in hippocampus; reduced astroglial and increased microglial responses; increased Aβ aggregates and high molecular weight peptides; abnormal chaperone responses and reduced autophagy. In conclusion, anesthetic gases induce changes which may reproduce AD pathology in mice with mutations which produced AD. It would be interesting to know whether anesthetics are risky for subjects with special genetic risk factors.
    Journal of Alzheimer's disease: JAD 01/2010; 22 Suppl 3:43-8. DOI:10.3233/JAD-2010-100822 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An important side effect of general anesthetics is respiratory depression. Anesthetics have multiple membrane targets of which ionotropic receptors such as gamma-aminobutyric acid-A (GABA(A)), glycine, N-methyl-D-aspartate and nicotinic acetylcholinergic (nACh) receptors are important members. GABA, glutamate and ACh are crucial neurotransmitters in the respiratory neuronal network, and the ability of anesthetics to modulate their release and interact with their receptors implies complex effects on respiration. Metabotropic receptors and intracellular proteins are other important targets for anesthetics suggesting complex effects on intracellular signaling pathways. Here we briefly overview the effects of general anesthetics on protein targets as far as these are relevant for respiratory control. Subsequently, we describe some methods with which the overall effect of anesthetics on the control of breathing can be measured, as well as some promising in vivo approaches to study their synaptic effects. Finally, we summarize the most important respiratory effects of volatile anesthetics in humans and animals and those of some intravenous anesthetics in animals.
    Respiratory Physiology & Neurobiology 07/2011; 177(2):80-92. DOI:10.1016/j.resp.2011.04.006 · 1.97 Impact Factor