Article

Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis.

Laboratory of Molecular Toxicology, Veterinary Faculty, University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain.
Pflügers Archiv - European Journal of Physiology (Impact Factor: 4.87). 10/2009; 459(3):499-508. DOI: 10.1007/s00424-009-0746-z
Source: PubMed

ABSTRACT The role of four Pi transporters in the renal handling of Pi was analyzed using functional and molecular methods. The abundance of NaPi-IIa, NaPi-IIc, and Pit-2 was increased by 100% in kidney from rats on a 0.1% Pi diet, compared to a 0.6% Pi diet. Pit-1 was not modified. Type II-mediated Pi uptake in Xenopus oocytes increased as the pH of the uptake medium increased, and the opposite occurred with Pit-1 and Pit-2. At pH 6.0, Pi uptake mediated through type II was approximately 10% of the uptake at pH 7.5, but the uptake through Pit-2 was 250% of the activity at pH 7.5. Real brush-border membrane vesicles (BBMV) responded to pH changes following the same pattern as type II transporters. Adaptation to a 0.1% Pi diet was accompanied by a 65% increase in the V (max) of BBMV Pi transport at pH 7.5, compared to a 0.6% Pi diet. The increase was only 11% at pH 6.0. Metabolic acidosis increased the expression of NaPi-IIc and Pit-2 in animals adapted to a low Pi diet, and phosphaturia was only observed in control diet animals. The combination of the pH effect, Pi adaptation, and metabolic acidosis suggests very modest involvement of Pit-2 in renal Pi handling. Real-time PCR and mathematical analyses of transport findings suggest that NaPi-IIa RNA accounts for 95% of all Pi transporters and that type II handles 97% of Pi transport at pH 7.5 and 60% of Pi transport at pH 6.0, depending on the pH and the physiological conditions.

0 Bookmarks
 · 
56 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal phosphate (Pi) absorption across the apical membrane of small intestinal epithelial cells is mainly mediated by the type IIb Na-coupled phosphate co-transporter (NaPi-IIb), but its expression and regulation in the chicken remain unclear. In the present study, we investigated the mRNA and protein levels of NaPi-IIb in three regions of chicken small intestine, and related their expression levels to the rate of net phosphate absorption. Our results showed that maximal phosphate absorption occurs in the jejunum, however the highest expression levels of NaPi-IIb mRNA and protein occurs in the duodenum. In response to a low-Pi diet (TP 0.2%), there is an adaptive response restricted to the duodenum, with increased brush border membrane (BBM) Na-Pi transport activity and NaPi-IIb protein and mRNA abundance. However, when switched from a low- (TP 0.2%) to a normal diet (TP 0.6%) for 4 h, there is an increase in BBM NaPi-IIb protein abundance in the jejunum, but no changes in BBM NaPi-IIb mRNA. Therefore, our study indicates that Na-Pi transport activity and NaPi-IIb protein expression are differentially regulated in the duodenum vs the jejunum in the chicken.
    Asian Australasian Journal of Animal Sciences 10/2012; 25(10):1457-65. · 0.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the kidney, both anions, phosphate and sulfate, are almost freely filtered and afterwards reclaimed (reabsorbed) to a large extent from tubular fluid along the proximal tubules. Under normal dietary conditions, fractional excretion of these anions is approximately 10%. Reabsorption of both anions occurs along the proximal tubules by active, saturable, and regulated transepithelial processes. Most of the transporters involved in renal handling of phosphate and sulfate have been identified and their transport functions as well as their cellular localizations have been described in detail. The role of these transporters in the renal handling of phosphate and sulfate has been investigated by the use of several mice knock out models and also by analysis of several inherited human diseases. Numerous hormonal and nonhormonal factors, have been described that alter renal excretion of phosphate or sulfate by mechanisms that alter the abundance of known phosphate/sulfate transporters and consequently renal excretion. These mechanisms contribute to the homeostasis of the extracellular concentrations of phosphate and sulfate. © 2014 American Physiological Society. Compr Physiol 4:771-792, 2014.
    Comprehensive Physiology. 04/2014; 4(2):771-92.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The Klotho gene was identified as an 'aging suppressor' in mice. Overexpression of the Klotho gene extends lifespan and defective Klotho results in rapid aging and early death. Both the membrane and secreted forms of Klotho have biological activity that include regulatory effects on general metabolism and a more specific effect on mineral metabolism that correlates with its effect on aging. Klotho serves as a co-receptor for fibroblast growth factor (FGF), but it also functions as a humoral factor that regulates cell survival and proliferation, vitamin D metabolism, and calcium and phosphate homeostasis and may serve as a potential tumor suppressor. Moreover, Klotho protects against several pathogenic processes in a FGF23-independent manner. These processes include cancer metastasis, vascular calcification, and renal fibrosis. This review covers the recent advances in Klotho research and discusses novel Klotho-dependent mechanisms that are clinically relevant in aging and age-related diseases.
    Molecular Membrane Biology 10/2013; · 1.73 Impact Factor