Article

Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization.

Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2009; 106(44):18745-50. DOI: 10.1073/pnas.0903032106
Source: PubMed

ABSTRACT Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARgamma ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness.

0 Followers
 · 
210 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets.
    PLoS ONE 03/2015; 10(3):e0115830. DOI:10.1371/journal.pone.0115830 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment. Copyright © 2014 Elsevier B.V. All rights reserved.
    Aquatic toxicology (Amsterdam, Netherlands) 12/2014; 159C:69-80. DOI:10.1016/j.aquatox.2014.11.020 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The hallmark of Type 2 diabetes (T2D) is hyperglycemia, although there are multiple other metabolic abnormalities that occur with T2D, including insulin resistance and dyslipidemia. To advance T2D prevention and develop targeted therapies for its treatment, a greater understanding of the alterations in metabolic tissues associated with T2D is necessary. The aim of this study was to use microarray analysis of gene expression in metabolic tissues from a mouse model of pre-diabetes and T2D to further understand the metabolic abnormalities that may contribute to T2D. We also aimed to uncover the novel genes and pathways regulated by the insulin sensitizing agent (CL-316,243) to identify key pathways and target genes in metabolic tissues that can reverse the diabetic phenotype. Methods Male MKR mice on an FVB/n background and age matched wild-type (WT) FVB/n mice were used in all experiments. Skeletal muscle, liver and fat were isolated from prediabetic (3 week old) and diabetic (8 week old) MKR mice. Male MKR mice were treated with CL-316,243. Skeletal muscle, liver and fat were isolated after the treatment period. RNA was isolated from the metabolic tissues and subjected to microarray and KEGG database analysis. Results Significant decreases in the expression of mitochondrial and peroxisomal fatty acid oxidation genes were found in the skeletal muscle and adipose tissue of adult MKR mice, and the liver of pre-diabetic MKR mice, compared to WT controls. After treatment with CL-316,243, the circulating glucose and insulin concentrations in the MKR mice improved, an increase in the expression of peroxisomal fatty acid oxidation genes was observed in addition to a decrease in the expression of retinaldehyde dehydrogenases. These genes were not previously known to be regulated by CL-316,243 treatment. Conclusions This study uncovers novel genes that may contribute to pharmacological reversal of insulin resistance and T2D and may be targets for treatment. In addition, it explains the lower free fatty acid levels in MKR mice after treatment with CL-316,243 and furthermore, it provides biomarker genes such as ACAA1 and HSD17b4 which could be further probed in a future study.
    Nutrition and metabolism 03/2015; 12(8). DOI:10.1186/s12986-015-0003-8