Validation of a curd-syneresis sensor over a range of milk composition and process parameters

Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
Journal of Dairy Science (Impact Factor: 2.55). 11/2009; 92(11):5386-95. DOI: 10.3168/jds.2009-2363
Source: PubMed

ABSTRACT An online visible-near-infrared sensor was used to monitor the course of syneresis during cheesemaking with the purpose of validating syneresis indices obtained using partial least squares, with cross-validation across a range of milk fat levels, gel firmness levels at cutting, curd cutting programs, stirring speeds, milk protein levels, and fat:protein ratio levels. Three series of trials were carried out in an 11-L cheese vat using recombined whole milk. Three factorial experimental designs were used, consisting of 1) 3 curd stirring speeds and 3 cutting programs; 2) 3 milk fat levels and 3 gel firmness levels at cutting; and 3) 2 milk protein levels and 3 fat:protein ratio levels, respectively. Milk was clotted under constant conditions in all experiments and the gel was cut according to the respective experimental design. Prediction models for production of whey and whey fat losses were developed in 2 of the experiments and validated in the other experiment. The best models gave standard error of prediction values of 6.6 g/100 g for yield of whey and 0.05 g/100 g for fat in whey, as compared with 4.4 and 0.013 g/100 g, respectively, for the calibration data sets. Robust models developed for predicting yield of whey and whey fat losses using a validation method have potential application in the cheese industry.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cheese yield is an important technological trait in the dairy industry. The aim of this study was to infer the genetic parameters of some cheese yield-related traits predicted using Fourier-transform infrared (FTIR) spectral analysis and compare the results with those obtained using an individual model cheese-producing procedure. A total of 1,264 model cheeses were produced using 1,500-mL milk samples collected from individual Brown Swiss cows, and individual measurements were taken for 10 traits: 3 cheese yield traits (fresh curd, curd total solids, and curd water as a percent of the weight of the processed milk), 4 milk nutrient recovery traits (fat, protein, total solids, and energy of the curd as a percent of the same nutrient in the processed milk), and 3 daily cheese production traits per cow (fresh curd, total solids, and water weight of the curd). Each unprocessed milk sample was analyzed using a MilkoScan FT6000 (Foss, Hillerød, Denmark) over the spectral range, from 5,000 to 900 wavenumber × cm−1. The FTIR spectrum-based prediction models for the previously mentioned traits were developed using modified partial least-square regression. Cross-validation of the whole data set yielded coefficients of determination between the predicted and measured values in cross-validation of 0.65 to 0.95 for all traits, except for the recovery of fat (0.41). A 3-fold external validation was also used, in which the available data were partitioned into 2 subsets: a training set (one-third of the herds) and a testing set (two-thirds). The training set was used to develop calibration equations, whereas the testing subsets were used for external validation of the calibration equations and to estimate the heritabilities and genetic correlations of the measured and FTIR-predicted phenotypes. The coefficients of determination between the predicted and measured values in cross-validation results obtained from the training sets were very similar to those obtained from the whole data set, but the coefficient of determination of validation values for the external validation sets were much lower for all traits (0.30 to 0.73), and particularly for fat recovery (0.05 to 0.18), for the training sets compared with the full data set. For each testing subset, the (co)variance components for the measured and FTIR-predicted phenotypes were estimated using bivariate Bayesian analyses and linear models. The intraherd heritabilities for the predicted traits obtained from our internal cross-validation using the whole data set ranged from 0.085 for daily yield of curd solids to 0.576 for protein recovery, and were similar to those obtained from the measured traits (0.079 to 0.586, respectively). The heritabilities estimated from the testing data set used for external validation were more variable but similar (on average) to the corresponding values obtained from the whole data set. Moreover, the genetic correlations between the predicted and measured traits were high in general (0.791 to 0.996), and they were always higher than the corresponding phenotypic correlations (0.383 to 0.995), especially for the external validation subset. In conclusion, we herein report that application of the cross-validation technique to the whole data set tended to overestimate the predictive ability of FTIR spectra, give more precise phenotypic predictions than the calibrations obtained using smaller data sets, and yield genetic correlations similar to those obtained from the measured traits. Collectively, our findings indicate that FTIR predictions have the potential to be used as indicator traits for the rapid and inexpensive selection of dairy populations for improvement of cheese yield, milk nutrient recovery in curd, and daily cheese production per cow.
    Journal of Dairy Science 10/2014; 97(10). DOI:10.3168/jds.2014-8309 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Production of reduced fat cheeses often requires modification of the manufacturing procedure using fat substitutes such as inulin, in order to achieve acceptable sensory properties. Nowadays the use of optical sensors in cheese making justify developing prediction algorithms for coagulation and syneresis parameters in milk gels with inulin with the goal of improve cheese yield, quality and homogeneity. A ran-domized factorial design was used to test the effect of inulin concentration (0%, 3%, and 6% w/w), temperature (27, 32, and 37 °C), and fat (<0.2%, and 1.5% w/w) on light backscatter parameters typically used for predicting significant coagulation and syneresis indexes. The coagulation process was monitored using near infrared spectrometry, small amplitude oscillatory rheometry and visual coagulation indexes. The extent and kinetics of syneresis was evaluated by volumetric methods. Prediction models with one, two and three-parameter were determined for the whey drainage kinetic rate constant (k), curd yield (cy), clotting time (t clot), visual cutting time (t cut), as well as the rheologically-determined gelation (t G 0 1) and cutting times (t G 0 30). The results demonstrated that it is possible to obtain models for the prediction of coagulation and syneresis parameters in milk gels when inulin is added as a fat substitute using a fiber optic light backscatter sensor.
    Journal of Food Engineering 07/2015; 157:63-69. DOI:10.1016/j.jfoodeng.2015.02.021 · 2.58 Impact Factor
  • Source