Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats.

Department of Internal Medicine Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
Archiv für Kreislaufforschung (Impact Factor: 7.35). 10/2009; 105(3):409-17. DOI: 10.1007/s00395-009-0065-8
Source: PubMed

ABSTRACT Mesenchymal stem cells (MSCs) are the pluripotent cells, which enter the circulation and home to sites of tissue injury or inflammation. MSCs are highlighted as a potential cell vector for gene therapy. In this study, we investigated whether transplanted allogeneic MSCs preferentially accumulate in the lung in rats with pulmonary hypertension (PH) and if so to determine the efficacy of MSC-based prostacyclin synthase (PCS) gene therapy for PH. PH was induced in Lewis rats by injecting monocrotaline at 7-weeks-old (week 0). MSCs were obtained by culturing bone marrow mononuclear cells. Allogeneic MSCs were intravenously transplanted at week 2 when moderate PH had been established. PH enhanced indium-111-oxine-labeled MSC accumulation in the lungs, but not in other organs, 2.5-times and 6-times, 1 and 14 days after transplantation, respectively. Transplantation of MSCs transduced with PCS (PSC-MSCs), but not with GFP (GFP-MSCs), reduced PH, pulmonary arterial thickening, and RV hypertrophy at week 4. The lung prostacyclin production was impaired in PH rats, which was restored and maintained for long time by PCS-MSCs, but not by GFP-MSCs. The survival rate at week 7 was 100% in PCS-MSC-transplanted PH rats, whereas they were 38 and 44% in PH rats and GFP-MSC-transplanted PH rats, respectively. In conclusion, the gene-engineered MSCs would be a suitable cell vector for gene delivery specifically to the PH lung. The allogeneic PCS-MSC transplantation attenuated PH and cardiovascular remodeling, and improved the prognosis in PH rats. The MSC-based PCS gene therapy may be a promising strategy for PH treatment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) exhibit multipotent differentiation potential and can be derived from embryonic, neonatal and adult differentiation stage III tissue sources. While increasing preclinical studies and clinical trials have indicated that MSC-based therapy is a promising strategy for cardiovascular regeneration, there are major challenges to overcome before this stem-cell technology can be widely applied in clinical settings. In this review, the following important issues will be addressed. First, optimal sources of MSC derivation suitable for myocardial repair are not determined. Second, assessments for preclinical and clinical studies of MSCs require more scientific data analysis. Third, mechanisms of MSC-based therapy for cardiovascular regeneration have not been fully understood yet. Finally, the potential benefit-risk ratio of MSC therapy needs to be evaluated systematically. Additionally, future development of MSC therapy will be discussed.
    Expert Review of Cardiovascular Therapy 04/2013; 11(4):505-17.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) can inhibit the progression of pulmonary artery hypertension (PAH) in the monocrotaline (MCT) model in the short term. The aim of this study was to further investigate the long-term effect of BMSCs on PAH and to explore the mechanism of the protective effect including the pulmonary vascular remodeling and cell differentiation. PAH model was established by subcutaneous injection of 50 mg/kg MCT as previously study. Postoperatively, the animals were randomly divided into three groups (n = 10 in each group): control, PAH group, and BMSCs implantation group. Six months after injection, immunology and immunohistochemistry analysis indicated the MCT-induced intima-media thickness in muscular arteries was reduced (P < 0.05); the area of collagen fibers in lung tissue was lower (P < 0.05), and the proliferating cell nuclear antigen level in pulmonary artery smooth muscle cells was decreased (P < 0.05). Immunofluorescence showed that the cells have the ability to differentiate between von Willebrand factor and vascular endothelial growth factor. Six months after intravenous injection, BMSCs could significantly improve pulmonary function by inhibiting the ventricular remodeling and the effect of cell differentiation.
    Clinical and Experimental Medicine 08/2013; · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety. © 2013 American Physiological Society. Compr Physiol 3:1749-1779, 2013.
    Comprehensive Physiology. 10/2013; 3(4):1749-1779.