Article

Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia.

Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Nature Neuroscience (Impact Factor: 15.25). 11/2009; 12(11):1361-3. DOI: 10.1038/nn.2432
Source: PubMed

ABSTRACT In Alzheimer's disease, microglia cluster around beta-amyloid deposits, suggesting that these cells are important for amyloid plaque formation, maintenance and/or clearance. We crossed two distinct APP transgenic mouse strains with CD11b-HSVTK mice, in which nearly complete ablation of microglia was achieved for up to 4 weeks after ganciclovir application. Neither amyloid plaque formation and maintenance nor amyloid-associated neuritic dystrophy depended on the presence of microglia.

1 Bookmark
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia, the tissue-resident macrophages of the brain, are attracting increasing attention as key players in brain homeostasis from development through aging. Recent works have highlighted new and unexpected roles for these once-enigmatic cells in both healthy central nervous system function and in diverse pathologies long thought to be primarily the result of neuronal malfunction. In this review, we have chosen to focus on Rett syndrome, which features early neurodevelopmental pathology, and Alzheimer's disease, a disorder associated predominantly with aging. Interestingly, receptor-mediated microglial phagocytosis has emerged as a key function in both developmental and late-life brain pathologies. In a mouse model of Rett syndrome, bone marrow transplant and CNS engraftment of microglia-like cells were associated with surprising improvements in pathology-these benefits were abrogated by block of phagocytic function. In Alzheimer's disease, large-scale genome-wide association studies have been brought to bear as a method of identifying previously unknown susceptibility genes, which highlight microglial receptors as promising novel targets for therapeutic modulation. Multi-photon in vivo microscopy has provided a method of directly visualizing the effects of manipulation of these target genes. Here, we review the latest findings and concepts emerging from the rapidly growing body of literature exemplified for Rett syndrome and late-onset, sporadic Alzheimer's disease.
    Acta neuropathologica. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro-or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro-or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
    Neural Plasticity 08/2014; · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent genome-wide association studies linked variants in TREM2 to a strong increase in the odds of developing Alzheimer's disease. The mechanism by which TREM2 influences the susceptibility to Alzheimer's disease is currently unknown. TREM2 is expressed by microglia and is thought to regulate phagocytic and inflammatory microglial responses to brain pathology. Given that a single allele of variant TREM2, likely resulting in a loss of function, conferred an increased risk of developing Alzheimer's disease, we tested whether loss of one functional trem2 allele would affect Abeta plaque deposition or the microglial response to Abeta pathology in APPPS1-21 mice.
    Molecular Neurodegeneration 06/2014; 9(1):20. · 4.01 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 27, 2014