Article

Mechanism of Inhibition of HIV-1 Reverse Transcriptase by 4 '-Ethynyl-2-fluoro-2 '-deoxyadenosine Triphosphate, a Translocation-defective Reverse Transcriptase Inhibitor

Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 10/2009; 284(51):35681-91. DOI: 10.1074/jbc.M109.036616
Source: PubMed

ABSTRACT Nucleoside reverse transcriptase inhibitors (NRTIs) are employed in first line therapies for the treatment of human immunodeficiency virus (HIV) infection. They generally lack a 3'-hydroxyl group, and thus when incorporated into the nascent DNA they prevent further elongation. In this report we show that 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a nucleoside analog that retains a 3'-hydroxyl moiety, inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC(50) of 0.05 nm, a potency several orders of magnitude better than any of the current clinically used NRTIs. This exceptional antiviral activity stems in part from a mechanism of action that is different from approved NRTIs. Reverse transcriptase (RT) can use EFdA-5'-triphosphate (EFdA-TP) as a substrate more efficiently than the natural substrate, dATP. Importantly, despite the presence of a 3'-hydroxyl, the incorporated EFdA monophosphate (EFdA-MP) acted mainly as a de facto terminator of further RT-catalyzed DNA synthesis because of the difficulty of RT translocation on the nucleic acid primer possessing 3'-terminal EFdA-MP. EFdA-TP is thus a translocation-defective RT inhibitor (TDRTI). This diminished translocation kept the primer 3'-terminal EFdA-MP ideally located to undergo phosphorolytic excision. However, net phosphorolysis was not substantially increased, because of the apparently facile reincorporation of the newly excised EFdA-TP. Our molecular modeling studies suggest that the 4'-ethynyl fits into a hydrophobic pocket defined by RT residues Ala-114, Tyr-115, Phe-160, and Met-184 and the aliphatic chain of Asp-185. These interactions, which contribute to both enhanced RT utilization of EFdA-TP and difficulty in the translocation of 3'-terminal EFdA-MP primers, underlie the mechanism of action of this potent antiviral nucleoside.

0 Followers
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 Reverse Transcriptase (HIV-1 RT) has been the target of numerous approved anti-AIDS drugs that are key components of Highly Active Anti-Retroviral Therapies (HAART). It remains the target of extensive structural studies that continue unabated for almost twenty years. The crystal structures of wild-type or drug-resistant mutant HIV RTs in the unliganded form or in complex with substrates and/or drugs have offered valuable glimpses into the enzyme's folding and its interactions with DNA and dNTP substrates, as well as with nucleos(t)ide reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase inhibitor (NNRTIs) drugs. These studies have been used to interpret a large body of biochemical results and have paved the way for innovative biochemical experiments designed to elucidate the mechanisms of catalysis and drug inhibition of polymerase and RNase H functions of RT. In turn, the combined use of structural biology and biochemical approaches has led to the discovery of novel mechanisms of drug resistance and has contributed to the design of new drugs with improved potency and ability to suppress multi-drug resistant strains.
    Viruses 02/2010; 2(2):606-638. DOI:10.3390/v2020606 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase (RT) confers clinically significant resistance to both nucleoside and non-nucleoside RT inhibitors (NNRTIs) by mechanisms that are not well understood. We used transient kinetics to characterize the enzymatic properties of N348I RT and determine the biochemical mechanism of resistance to the NNRTI nevirapine (NVP). We demonstrate that changes distant from the NNRTI binding pocket decrease inhibitor binding (increase K(d)(-NVP)) by primarily decreasing the association rate of the inhibitor (k(on-NVP)). We characterized RTs mutated in either p66 (p66(N348I)/p51(WT)), p51 (p66(WT)/p51(N348I)), or both subunits (p66(N348I)/p51(N348I)). Mutation in either subunit caused NVP resistance during RNA-dependent and DNA-dependent DNA polymerization. Mutation in p66 alone (p66(N348I)/p51(WT)) caused NVP resistance without significantly affecting RNase H activity, whereas mutation in p51 caused NVP resistance and impaired RNase H, demonstrating that NVP resistance may occur independently from defects in RNase H function. Mutation in either subunit improved affinity for nucleic acid and enhanced processivity of DNA synthesis. Surprisingly, mutation in either subunit decreased catalytic rates (k(pol)) of p66(N348I)/p51(N348I), p66(N348I)/p51(WT), and p66(WT)/p51(N348I) without significantly affecting affinity for deoxynucleotide substrate (K(d)(-dNTP)). Hence, in addition to providing structural integrity for the heterodimer, p51 is critical for fine tuning catalytic turnover, RNase H processing, and drug resistance. In conclusion, connection subdomain mutation N348I decreases catalytic efficiency and causes in vitro resistance to NVP by decreasing inhibitor binding.
    Journal of Biological Chemistry 09/2010; 285(49):38700-9. DOI:10.1074/jbc.M110.153783 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foot-and-Mouth Disease Virus (FMDV) is a picornavirus that infects cloven-hoofed animals and leads to severe losses in livestock production. In the case of an FMD outbreak, emergency vaccination requires at least 7 days to trigger an effective immune response. There are currently no approved inhibitors for the treatment or prevention of FMDV infections. Using a luciferase-based assay we screened a library of compounds and identified seven novel inhibitors of 3Dpol, the RNA-dependent RNA polymerase of FMDV. The compounds inhibited specifically 3Dpol (IC(50)s from 2-17 µM) and not other viral or bacterial polymerases. Enzyme kinetic studies on the inhibition mechanism by compounds 5D9 and 7F8 showed that they are non-competitive inhibitors with respect to NTP and nucleic acid substrates. Molecular modeling and docking studies into the 3Dpol structure revealed an inhibitor binding pocket proximal to, but distinct from the 3Dpol catalytic site. Residues surrounding this pocket are conserved among all 60 FMDV subtypes. Site directed mutagenesis of two residues located at either side of the pocket caused distinct resistance to the compounds, demonstrating that they indeed bind at this site. Several compounds inhibited viral replication with 5D9 suppressing virus production in FMDV-infected cells with EC(50) = 12 µM and EC(90) = 20 µM). We identified several non-competitive inhibitors of FMDV 3Dpol that target a novel binding pocket, which can be used for future structure-based drug design studies. Such studies can lead to the discovery of even more potent antivirals that could provide alternative or supplementary options to contain future outbreaks of FMD.
    PLoS ONE 12/2010; 5(12):e15049. DOI:10.1371/journal.pone.0015049 · 3.53 Impact Factor