Article

Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin.

Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
Cell (Impact Factor: 33.12). 10/2009; 139(2):366-79. DOI: 10.1016/j.cell.2009.07.049
Source: PubMed

ABSTRACT Current opinion holds that pigment cells, melanocytes, are derived from neural crest cells produced at the dorsal neural tube and that migrate under the epidermis to populate all parts of the skin. Here, we identify growing nerves projecting throughout the body as a stem/progenitor niche containing Schwann cell precursors (SCPs) from which large numbers of skin melanocytes originate. SCPs arise as a result of lack of neuronal specification by Hmx1 homeobox gene function in the neural crest ventral migratory pathway. Schwann cell and melanocyte development share signaling molecules with both the glial and melanocyte cell fates intimately linked to nerve contact and regulated in an opposing manner by Neuregulin and soluble signals including insulin-like growth factor and platelet-derived growth factor. These results reveal SCPs as a cellular origin of melanocytes, and have broad implications on the molecular mechanisms regulating skin pigmentation during development, in health and pigmentation disorders.

2 Followers
 · 
179 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology that enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labeled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 h to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5) or trunk level (embryonic day 2.5). Chick embryos are reincubated and analyzed after 48 h for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence, the embryonic chicken transplantation model has the potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and dissemination in melanoma.
    Frontiers in Oncology 02/2015; 5:36. DOI:10.3389/fonc.2015.00036
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Over 60% of combat-wounded patients develop heterotopic ossification (HO). Nearly 33% of them require surgical excision for symptomatic lesions, a procedure that is both fraught with complications and can delay or regress functional rehabilitation. Relative medical contraindications limit widespread use of conventional means of primary prophylaxis, such as nonspecific nonsteroidal anti-inflammatory medications and radiotherapy. Better methods for risk stratification are needed to both mitigate the risk of current means of primary prophylaxis as well as to evaluate novel preventive strategies currently in development. We asked whether Raman spectral changes, measured ex vivo, could be associated with histologic evidence of the earliest signs of HO formation and substance P (SP) expression in tissue biopsies from the wounds of combat casualties. In this pilot study, we compared normal muscle tissue, injured muscle tissue, very early HO lesions ( < 16 d post-injury), early HO lesions ( > 16 d post-injury) and mature HO lesions. The Raman spectra of these tissues demonstrate clear differences in the Amide I and III spectral regions of HO lesions compared to normal tissue, denoted by changes in the Amide I band center (p < 0.01) and the 1340/1270 cm(-1) (p < 0.05) band area and band height ratios. SP expression in the HO lesions appears to peak between 16 and 30 d post-injury, as determined by SP immunohistochemistry of corresponding tissue sections, potentially indicating optimal timing for administration of therapeutics. Raman spectroscopy may therefore prove a useful, non-invasive and early diagnostic modality to detect HO formation before it becomes evident either clinically or radiographically.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nervous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex questions that have existed for decades and are still in the research focus of developmental biologists. This review discusses transcriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyelinating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous ganglia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipotent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia, another type of peripheral glia, will not be discussed in this review. GLIA 2015. © 2015 Wiley Periodicals, Inc.
    Glia 03/2015; DOI:10.1002/glia.22816 · 5.47 Impact Factor