Segmented helical structure of the neck region of the glycan-binding receptor DC-SIGNR.

Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Journal of Molecular Biology (Impact Factor: 3.91). 10/2009; 394(4):613-20. DOI: 10.1016/j.jmb.2009.10.006
Source: PubMed

ABSTRACT Carbohydrate-recognition domains (CRDs) in the glycan-binding receptors DC-SIGN (dendritic-cell-specific intercellular adhesion molecule 1-grabbing nonintegrin; CD209) and DC-SIGNR (DC-SIGN-related receptor, also known as L-SIGN and variously designated CD209L and CD299) are projected from the membrane surface by extended neck domains containing multiple repeats of a largely conserved 23-amino-acid sequence motif. Crystals of a fragment of the neck domain of DC-SIGNR containing multiple repeats in which each molecule extends through multiple unit cells, such that the observed crystallographic asymmetric unit represents one repeat averaged over six repeats of the protein, have been obtained. The repeats are largely alpha-helical. Based on the structure and arrangement of the repeats in the crystal, the neck region can be described as a series of four-helix bundles connected by short, non-helical linkers. Combining the structure of the isolated neck domain with a previously determined overlapping structure of the distal end of the neck region with the CRDs attached provides a model of the almost-complete extracellular portion of the receptor. The results are consistent with previous characterization of the extended structure for the isolated neck region and the extracellular domain. The organization of the neck suggests how CRDs may be disposed differently in DC-SIGN compared with DC-SIGNR and in variant forms of DC-SIGNR assembled from polypeptides with different numbers of repeats in the neck domain.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor that mediates the recognition, the binding and internalization of ox-LDL. A truncated soluble form of LOX-1 (sLOX-1) has been identified that, at elevated levels, has been associated to acute coronary syndrome. Human sLOX-1 is the extracellular part of membrane LOX-1 which is cleaved in the NECK domain with a mechanism that has not yet been identified. Purification of human sLOX-1 has been carried out to experimentally identify the cleavage site region within the NECK domain. Molecular modelling and classical molecular dynamics simulation techniques have been used to characterize the structural and dynamical properties of the LOX-1 NECK domain in the presence and absence of the CTLD recognition region, taking into account the obtained proteolysis results. The simulative data indicate that the NECK domain is stabilized by the coiled-coil heptad repeat motif along the simulations, shows a definite flexibility pattern and is characterized by specific electrostatic potentials. The detection of a mobile inter-helix space suggests an explanation for the in vivo susceptibility of the NECK domain to the proteolytic cleavage, validating the assumption that the NECK domain sequence is composed of a coiled-coil motif destabilized in specific regions of functional significance.
    Archives of Biochemistry and Biophysics 10/2013; · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.
    Biophysical Journal 02/2015; 108(3):666-677. · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C-type lectins DC-SIGN, DC-SIGNR and LSECtin are encoded by the lectin gene cluster on chromosome 19p13.3 and perform cell-adhesion and pathogen recognition functions on dendritic cells, liver cells and lymph node sinusoidal endothelial cells. DC-SIGN and DC-SIGNR share similar overall gene and protein molecule structures, and they exhibit high affinity for high-mannose carbohydrates. LSECtin, a Ca(2+)-dependent C-type lectin, interacts with mannose, NAcGlc and fucose. These lectins allow pathogen recognition (e.g., viruses, bacteria and allergens) and cell adhesion for dendritic and endothelial cells in different tissues, which may enhance the infection and facilitate the spread of those pathogens. A better understanding of these lectins may yield information about how pathogens are captured by particular cells and how they spread in different tissues. These studies would provide more detail about the physiopathological mechanisms of viral and bacterial infections and may also lead to new strategies to treat or prevent infections.
    International Reviews Of Immunology 10/2013; · 5.28 Impact Factor


Available from