Article

Effect of dehydrated storage on the survival of Francisella tularensis in infant formula.

Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA.
Food Microbiology (Impact Factor: 3.37). 12/2009; 26(8):932-5. DOI: 10.1016/j.fm.2009.06.005
Source: PubMed

ABSTRACT Francisella tularensis is a Gram-negative bacterium that can cause gastrointestinal or oropharyngeal tularemia in humans from ingestion of contaminated food or water. Despite the potential for accidental or intentional contamination of foods with F. tularensis, there are few studies on the long-term survivability of this organism in food matrices. Infant formula has previously been implicated as a vehicle for the transmission of a variety of bacterial pathogens in infants. In this study, we investigated the survival of F. tularensis in dehydrated infant formula under various storage conditions. F. tularensis was stored for up to 12 weeks in dehydrated infant formula in an ambient air, dry or nitrogen atmosphere. Viable counts of fresh F. tularensis at 12 weeks in infant formula revealed a 4.15, 3.37 and 3.72-log decrease in ambient air, dry and nitrogen atmosphere, respectively. D-values were calculated (in weeks) as 3.99, 4.68 and 4.47 in air, dry and nitrogen atmosphere, respectively.

1 Follower
 · 
91 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drying is a commonly used technique for improving the product stability of biotherapeutics. Typically, drying is accomplished through freeze-drying, as evidenced by the availability of several lyophilized products on the market. There are, however, a number of drawbacks to lyophilization, including the lengthy process time required for drying, low energy efficiency, high cost of purchasing and maintaining the equipment, and sensitivity of the product to freezing and various other processing-related stresses. These limitations have led to the search for next-generation drying methods that can be applied to biotherapeutics. Several alternative drying methods are reviewed herein, with particular emphasis on methods that are commonly employed outside of the biopharmaceutical industry including spray drying, convective drying, vacuum drying, microwave drying, and combinations thereof. Although some of the technologies have already been implemented for processing biotherapeutics, others are still at an early stage of feasibility assessment. An overview of each method is presented, detailing the comparison to lyophilization, examining the advantages and disadvantages of each technology, and evaluating the potential of each to be utilized for drying biotherapeutic products. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
    Journal of Pharmaceutical Sciences 09/2014; 103(9). DOI:10.1002/jps.23998 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1-106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
    PLoS ONE 12/2014; 9(12). DOI:10.1371/journal.pone.0114622 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Powdered infant formula has previously been linked to the transmission of various bacterial pathogens in infants resulting in life-threatening disease and death. Survival studies of 2 common foodborne pathogens, Salmonella enterica serovar Typhi and Shigella dysenteriae, in powdered infant formula have not been previously studied despite the potentially devastating consequences from ingestion of these organisms, particularly by newborns, in case of a natural or deliberate contamination event. Therefore, to better predict the risk of S. Typhi and S. dysenteriae infection from consumption of infant formula, the present study was undertaken to determine survival of these microorganisms in dry infant formula under varying atmospheric conditions. A 2-strain cocktail of S. Typhi and a 3-strain cocktail of S. dysenteriae were stored for up to 12 wk in dehydrated infant formula in an ambient air or nitrogen atmosphere. Viable counts of S. Typhi at 12 wk in infant formula revealed a 2.9- and 1.69-log decrease in ambient air and nitrogen atmosphere, respectively. Viable counts of S. dysenteriae at 12 wk in infant formula revealed a 0.81- and 0.42-log decrease in ambient air and nitrogen atmosphere, respectively. These results show that S. Typhi and S. dysenteriae can remain viable for prolonged periods of time in powdered infant formula, and the presence of nitrogen enhances survival. PRACTICAL APPLICATION: Our goal in this work was to study the survival of S. Typhi and S. dysenteriae in dehydrated storage conditions in infant formula. This interest is partially generated by the possibility of using these 2 microorganisms to deliberately contaminate the food supply. The outcome of this study will help us to have a better idea how to respond and react to the risk of deliberate food contamination.
    Journal of Food Science 08/2011; 76(6):M324-8. DOI:10.1111/j.1750-3841.2011.02268.x · 1.79 Impact Factor