Interleukin-19 protects mice from innate-mediated colonic inflammation

Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan.
Inflammatory Bowel Diseases (Impact Factor: 5.48). 01/2010; 16(6):1017-28. DOI: 10.1002/ibd.21151
Source: PubMed

ABSTRACT Inflammatory bowel disease (IBD) results from the chronic dysregulation of the mucosal immune system and the aberrant activation of both the innate and the adaptive immune responses. We used two complementary models of colonic inflammation to examine the roles of interleukin (IL)-19 in colonic inflammation and thus its possible role in IBD.
Using gene-targeting, we generated IL-19-deficient mice. To study the activation of the innate immune response during colonic inflammation we characterized an innate immune-mediated model of colitis induced by dextran sulfate sodium (DSS). DSS can induce not only acute colitis but also chronic colitis. In addition to the acute DSS-induced colitis model, we used a chronic DSS-induced colitis model that is associated with the activation of both Th1 and Th2 cytokines as well as innate immune response in the colon.
We show that IL-19-deficient mice are more susceptible to experimental acute colitis induced by DSS, and this increased susceptibility is correlated with the accumulation of macrophages and the increased production of IFN-gamma, IL-1beta, IL-6, IL-12, TNF-alpha, and KC. Additionally, cytokine production in IL-19-deficient macrophages was enhanced on stimulation of lipopolysaccharide (LPS) through reduced phosphorylation of STAT1 and STAT3. Moreover, our results clearly demonstrate that IL-19 is required for B-cell infiltration during chronic DSS-induced colitis, which may be mediated by IL-13 and IL-6.
The finding that IL-19 drives pathogenic innate immune responses in the colon suggests that the selective targeting of IL-19 may be an effective therapeutic approach in the treatment of human IBD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) and gene expression analyses have revealed that single nucleotide polymorphisms (SNPs) associated with multifactorial diseases, such as schizophrenia, are significantly more likely to be associated with expression quantitative trait loci (eQTL). It was recently suggested that an immune system imbalance plays an important role in the pathogenesis of schizophrenia. Interleukin-19 is a novel cytokine that may play multiple roles in immune regulation and various diseases. We selected eight tag SNPs in the eQTL of the IL-19 gene. Seven of the SNPs are putative cis-acting SNPs. Then, we conducted a case-control study using two independent samples. The first sample comprised 567 schizophrenia patients and 710 controls, and the second sample comprised 677 schizophrenia patients and 667 controls. We identified the TGAA haplotype as being significantly associated with schizophrenia (p=0.0036 and corrected p=0.0264), although a combined analysis of the TGAA haplotype with the replication samples exhibited a nominally significant difference (p=0.022 and corrected p=0.235). These results suggest that the IL-19 gene might slightly contribute to the genetic risk of schizophrenia. Thus, further research on the association of eQTL SNPs with schizophrenia is warranted.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 12/2013; 50. DOI:10.1016/j.pnpbp.2013.12.006 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory cytokines within the tumor microenvironment are linked to progression in breast cancer. Interleukin- (IL-) 19, part of the IL-10 family, contributes to a range of diseases and disorders, such as asthma, endotoxic shock, uremia, psoriasis, and rheumatoid arthritis. IL-19 is expressed in several types of tumor cells, especially in squamous cell carcinoma of the skin, tongue, esophagus, and lung and invasive duct carcinoma of the breast. In breast cancer, IL-19 expression is correlated with increased mitotic figures, advanced tumor stage, higher metastasis, and poor survival. The mechanisms of IL-19 in breast cancer have recently been explored both in vitro and in vivo. IL-19 has an autocrine effect in breast cancer cells. It directly promotes proliferation and migration and indirectly provides a microenvironment for tumor progression, which suggests that IL-19 is a prognostic marker in breast cancer and that antagonizing IL-19 may have therapeutic potential.
    Clinical and Developmental Immunology 04/2013; 2013:294320. DOI:10.1155/2013/294320 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite aggressive dietary modification, lipid-lowering medications, and other interventional medical therapy, vascular disease continues to be a leading cause of mortality in the western world. It is a significant medical and socioeconomic problem contributing to mortality of multiple diseases including myocardial infarction, stroke, renal failure, and peripheral vascular disease. Morbidity and mortality of vascular disease are expected to worsen with the increasing number of patients with comorbid conditions such as obesity, metabolic syndrome, and diabetes mellitus type 2. Vascular diseases such as atherosclerosis, restenosis, and allograft vasculopathy are recognized to be driven by inflammation, and as such, cytokines which mediate inflammation not only represent important targets of rational therapy, but also can be considered as possible therapeutic modalities themselves. In this paper, we will examine the role of inflammatory cytokines and lymphocyte T(h)1/T(h)2 polarity in vascular inflammation, with a focus on atherosclerotic vascular disease. We will then introduce a recently described T(h)2 interleukin, interleukin-19 (IL-19), as a previously unrecognized mediator of vascular inflammatory disorders. We will review our current understanding of this interleukin in health and disease and present the possibility that IL-19 could represent a potential therapeutic to combat vascular inflammatory disease.
    07/2012; 2012:253583. DOI:10.1155/2012/253583


1 Download