Article

Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer's transgenic mice.

Department of Neurology, University of California Irvine School of Medicine, USA.
American Journal Of Pathology (Impact Factor: 4.6). 11/2009; 175(5):2099-110. DOI: 10.2353/ajpath.2009.090159
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is pathologically characterized by accumulation of beta-amyloid (Abeta) protein deposits and/or neurofibrillary tangles in association with progressive cognitive deficits. Although numerous studies have demonstrated a relationship between brain pathology and AD progression, the Alzheimer's pathological hallmarks have not been found in the AD retina. A recent report showed Abeta plaques in the retinas of APPswe/PS1DeltaE9 transgenic mice. We now report the detection of Abeta plaques with increased retinal microvascular deposition of Abeta and neuroinflammation in Tg2576 mouse retinas. The majority of Abeta-immunoreactive plaques were detected from the ganglion cell layer to the inner plexiform layer, and some plaques were observed in the outer nuclear layer, photoreceptor outer segment, and optic nerve. Hyperphosphorylated tau was labeled in the corresponding areas of the Abeta plaques in adjacent sections. Although Abeta vaccinations reduced retinal Abeta deposits, there was a marked increase in retinal microvascular Abeta deposition as well as local neuroinflammation manifested by microglial infiltration and astrogliosis linked with disruption of the retinal organization. These results provide evidence to support further investigation of the use of retinal imaging to diagnose AD and to monitor disease activity.

Full-text

Available from: Zhiqun Tan, Jun 02, 2015
0 Followers
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinas of Alzheimer’s disease (AD) patients and transgenic AD animal models display amyloid beta deposits and degeneration of ganglion cells. Little is known, however, about the glial changes in the AD retina. The present study used a triple transgenic mouse model (3xTG-AD), which carries mutated human amyloid precursor protein, tau, and presenilin 1 genes and closely mimics the human brain pathology, to investigate retinal glial changes in AD. AD cognitive symptoms are known to begin in the 3xTG-AD mice at four months of age but plaques and tangles are not seen until six to twelve months. Müller cells in 3xTG-AD animals were GFAP-positive, indicating activation, at the earliest time point investigated, nine months. Astrocyte activation was also suggested in the 3xTG-AD mice by an apparent increase in size and process number. Another glial marker, S100, was expressed by astrocytes in both the non-transgenic (NTG) controls and 3xTG-AD retinas. Labeling was predominantly nuclear in nine month non-transgenic (NTG) control mice but was also seen in the cytoplasm and processes at 18 months of age. Interestingly, the nuclear localization was not as prominent in the 3xTG-AD retina even at nine months with labelling observed in astrocyte processes. The diffusion of S100 suggests the possible secretion of this protein, as is seen in the brain, with age and, more profoundly, associated with AD. Several dense, abnormally shaped, opaque structures were noted in all 3xTG-AD mice investigated. These structures, which were enveloped by GFAP and S100-positive astrocytes and Müller cells, were positive for amyloid beta, suggesting that they are amyloid plaques. Staining control retinas with amyloid showed similar structures in 30% of NTG animals but these were fewer in number and not associated with glial activation. The results herein indicate retinal glia activation in the 3xTG-AD mouse retina.
    Experimental Eye Research 10/2014; 127. DOI:10.1016/j.exer.2014.08.006 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer's disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer's disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1-40 and Abeta1-42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.
    Cell Stress and Chaperones 03/2014; 19(6). DOI:10.1007/s12192-014-0506-7 · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Alzheimer's disease (AD) is neurodegenerative condition and most common cause of dementia worldwide. Current criteria for its diagnosis and monitoring rely on subjective, expensive or invasive methods that lack sufficient sensitivity, such that a concrete diagnosis of AD can only be made postmortem. Given the structural similarities of the neuro-retina and central nervous system, researchers have shown many manifestations of AD to be detectible in the retinae of humans and transgenic models of AD. Due to the eye's unique optical properties allowing noninvasive in vivo imaging, the retina could provide a window for the early diagnosis and monitoring of AD long before symptom manifestation.
    06/2014; 4(3):241-52. DOI:10.2217/nmt.14.19