DUX4c is up-regulated in FSHD. It induces the MYF5 protein and human myoblast proliferation

Katholieke Universiteit Leuven, Belgium
PLoS ONE (Impact Factor: 3.23). 10/2009; 4(10):e7482. DOI: 10.1371/journal.pone.0007482
Source: PubMed


Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology.

Download full-text


Available from: Alexandra Belayew,
  • Source
    • "Less toxic variants of DUX4 were also obtained when deleting the C-terminal region of the protein. This C-terminal domain of DUX4 has the signature of a transcription factor and differs from the non-toxic DUX4 highly homologous protein DUX4c [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: DUX4 (Double Homeobox Protein 4) is a nuclear transcription factor encoded at each D4Z4 unit of a tandem-repeat array at human chromosome 4q35. DUX4 constitutes a major candidate pathogenic protein for facioscapulohumeral muscular dystrophy (FSHD), the third most common form of inherited myopathy. A low-level expression of DUX4 compromises cell differentiation in myoblasts and its overexpression induces apoptosis in cultured cells and living organisms. In this work we explore potential molecular determinants of DUX4 mediating nuclear import and cell toxicity. Deletion of the hypothetical monopartite nuclear localization sequences RRRR(23), RRKR(98) and RRAR(148) (i.e. NLS1, NLS2 and NLS3, respectively) only partially delocalizes DUX4 from the cell nuclei. Nuclear entrance guided by NLS1, NLS2 and NLS3 does not follow the classical nuclear import pathway mediated by α/β importins. NLS and homeodomain mutants from DUX4 are dramatically less cell-toxic than the wild type molecule, independently of their subcellular localization. A triple ΔNLS1-2-3 deletion mutant is still partially localized in the nuclei, indicating that additional sequences in DUX4 contribute to nuclear import. Deletion of ≥111 amino acids from the C-terminal of DUX4, on a ΔNLS1-2-3 background, almost completely re-localizes DUX4 to the cytoplasm, indicating that the C-ter tail contributes to subcellular trafficking of DUX4. Also, C-terminal deletion mutants of DUX4 on a NLS wild type background are less toxic than wild type DUX4. Results reported here indicate that DUX4 possesses redundant mechanisms to assure nuclear entrance and that its various transcription-factor associated domains play an essential role in cell toxicity.
    PLoS ONE 10/2013; 8(10):e75614. DOI:10.1371/journal.pone.0075614 · 3.23 Impact Factor
  • Source
    • "A recent study indicated that Polycomb group proteins induced chromatin repression on large D4Z4 arrays in healthy cells, whereas a long non-coding RNA expressed from the contracted locus recruited the Trithorax group protein Ash1L and promoted histone H3 lysine 36 dimethylation and chromatin opening [6]. Several FSHD candidate genes located centromeric of D4Z4 have been proposed, including ANT1 (adenine nucleotide translocator 1 gene) [7], FRG1 (FSHD-related gene 1) [8], FRG2 [9] and DUX4c (double homeobox 4 centromeric) [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL) method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS) to study FSHD myotubes. Primary CD56(+) FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the adjustment of a nuclear fractionation compatible with mass spectrometry allowed us to highlight alterations of proteins involved in mRNA processing and stability.
    PLoS ONE 12/2012; 7(12):e51865. DOI:10.1371/journal.pone.0051865 · 3.23 Impact Factor
  • Source
    • "The primary model is that the loss of D4Z4 repeats increases expression of a double homeobox transcription factor DUX4c, a putative gene centromeric to the D4Z4 repeats and highly homologous to DUX4 [11], [12], [13]. DUX4c has been shown to be up-regulated in FSHD biopsies and primary myoblasts, possibly leading to induction of the MYF5 myogenic regulator, which serves to inhibit differentiation and activate proliferation [14], [15]. In addition, overexpression of DUX4 in other cell lines has been shown to cause apoptosis and impair myogenesis in both cell culture models and zebrafish development [16], [17], [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.
    PLoS ONE 05/2011; 6(5):e19780. DOI:10.1371/journal.pone.0019780 · 3.23 Impact Factor
Show more