Pulmonary IL-17E (IL-25) Production and IL-17RB+ Myeloid Cell-Derived Th2 Cytokine Production Are Dependent upon Stem Cell Factor-Induced Responses during Chronic Allergic Pulmonary Disease

Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
The Journal of Immunology (Impact Factor: 5.36). 11/2009; 183(9):5705-15. DOI: 10.4049/jimmunol.0901666
Source: PubMed

ABSTRACT In the present studies local neutralization of allergen-induced stem cell factor (SCF) leads to decreased production of Th2 cytokines, a reduction in inflammation, allergen-specific serum IgE/IgG1, and attenuation of severe asthma-like responses. The local blockade of pulmonary SCF also resulted in a significant reduction of IL-17E (IL-25). Sorted cell populations from the lung indicated that IL-25 was produced from c-kit(+) cells, whereas Th2 cytokine production was primarily from c-kit(-) cell populations. SCF stimulated c-kit(+) eosinophils produced IL-25, whereas bone marrow-derived mast cells did not. Using 4get mice that contain a IL-4-IRES-eGFP that when transcribed coexpress GFP and IL-4, our studies identified cells that comprised a CD11b(+), GR1(+), Ly6C(+/-), c-kit(-), CD4(-), CD11c(-), MHC class II(low) cell population as a source of IL-4 in the lung after chronic allergen challenge. In the bone marrow a similar cell was identified with approximately a third of the IL-4(+) cells also expressing c-kit(+). The pulmonary and bone marrow IL-4(+) cell populations were significantly reduced upon local pulmonary anti-SCF treatment. Subsequently, when IL-25R was examined during the chronic allergen responses the expression was found on the IL-4(+) myeloid cell population that expressed CD11b(+)GR1(+). Interestingly, the IL-25R(+) cells in the bone marrow were also all CD11b(+)GR1(+), similar to the lung cells, but they were also all c-kit(+), potentially suggesting a maturation of the bone marrow cell once it enters the lung and/or is stimulated by SCF. Overall, these studies suggest a complex relationship between SCF, bone marrow-derived IL-25-responsive myeloid cells, Th2 cytokines, and chronic allergic disease.

  • Source
    • "Protein & Cell IL-17E (IL-25) IL-25 is a distinct cytokine in the IL-17 family originally identified by sequence homology search (Fort et al., 2001; Lee et al., 2001) and its expression was first characterized in highly polarized Th2 cells, implicating its role in type-2 immune responses (Fort et al., 2001). Latter studies have suggested that IL-25 also expresses in mast cells upon IgE cross-linkage (Ikeda et al., 2003), in alveolar macrophages (Kang et al., 2005), eosinophils (Wang et al., 2007; Dolgachev et al., 2009) and basophils (Wang et al., 2007). We and others also found that IL-25 mRNA expresses in lung epithelial cells treated with allergen (Angkasekwinai et al., 2007) or intestinal epithelial cells exposed to commensal bacteria (Zaph et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The recently identified interleukin-17 (IL-17) cytokines family, which comprises six members in mammals (IL-17A-F), plays essential roles in the host immunity against infectious diseases and chronic inflammatory diseases. The three-dimensional structures containing IL-17A or IL-17F have become available and revealed the unique structural features of IL-17s as well as their receptors. Molecular modeling in this review shows that IL-17s may adopt a "cysteine knot" fold commonly seen in nerve growth factor (NGF) and other neurotrophins. Further modeling analysis unmasks a signature interaction feature of the IL-17F/IL-17RA complex, where a small loop of IL-17RA slots into the deep groove of the interface of IL-17F homodimer. This is quite different from the interaction between the best known four-helix cytokines and their cognate receptors. On the other hand, structure of IL-17A and its monoclonal antibody (CAT-2200) shows that, albeit that the antigenic epitope of IL-17A resides outside of the IL-17A homodimer interface, its physical proximity to the receptor binding groove may explain that antibody blockage would be achieved by interfering with the ligand-receptor interaction. This review is to summarize the advance in understanding the structure and function of IL-17 family cytokines, focusing mainly on IL-17A, IL-17F and IL-17E, in the hope of gaining better knowledge of immunotherapeutic strategies against various inflammatory diseases.
    Protein & Cell 01/2011; 2(1):26-40. DOI:10.1007/s13238-011-1006-5 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a very complex and heterogeneous disease that is characterized by airway inflammation and airway hyper-reactivity (AHR). The pathogenesis of asthma is associated with environmental factors, many cell types, and several molecular and cellular pathways. These include allergic, non-allergic and intrinsic pathways, which involve many cell types and cytokines. Animal models of asthma have helped to clarify some of the underlying mechanisms of asthma, demonstrating the importance of T helper type 2 (T(H)2)-driven allergic responses, as well as of the non-allergic and intrinsic pathways, and contributing to understanding of the heterogeneity of asthma. Further study of these many pathways to asthma will greatly increase understanding of the distinct asthma phenotypes, and such studies may lead to new therapies for this important public health problem.
    Nature Immunology 07/2010; 11(7):577-84. DOI:10.1038/ni.1892 · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An altered balance between effector and regulatory factors is supposed to sustain the tissue-damaging immune response in inflammatory bowel disease (IBD). We have recently shown that in IBD, there is a defective synthesis of the counter-regulatory cytokine, interleukin (IL)-25. In this study we investigated factors that control IL-25 production in the gut. IBD patients produced less IL-25 when compared with normal controls. Stimulation of normal intestinal explants with tumor necrosis factor-α (TNF-α), but not interferon-γ (IFN-γ) or IL-21, reduced IL-25 synthesis. Consistently, IL-25 production was enhanced by anti-TNF-α both in vitro and in vivo. Upregulation of IL-25 was also seen in normal colonic explants stimulated with transforming growth factor-β1 (TGF-β1). As in IBD, TGF-β1 activity is abrogated by Smad7, we next assessed whether inhibition of Smad7 with an antisense oligonucleotide enhanced IL-25 expression. Knockdown of Smad7 was accompanied by an increase in IL-25 production. Data show that IL-25 production is differently regulated by TNF-α and TGF-β1 in the human gut.
    Mucosal Immunology 10/2010; 4(2):239-244. DOI:10.1038/mi.2010.68 · 7.54 Impact Factor
Show more


Available from