Article

Mast cells in atopic dermatitis.

Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
Current opinion in immunology (Impact Factor: 10.88). 10/2009; 21(6):666-78. DOI: 10.1016/j.coi.2009.09.006
Source: PubMed

ABSTRACT Mast cells play as the major effector cells in immediate hypersensitivity through activation via the high-affinity IgE receptor, Fc epsilon RI, although many other functions have recently been discovered for this cell type. Given the broad array of proinflammatory mediators secreted from Fc epsilon RI-activated mast cells, as well as sensitization to allergens, IgE elevation, and increased mast cells in a majority of atopic dermatitis patients, mast cells are believed to be involved in the pathogenesis of atopic dermatitis. Numerous animal models have been used to study this epidemic disease. Here we review the recent progress to synthesize our current understanding of this disease and potential mechanisms for a mast cell's role in the disease.

1 Bookmark
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells produce a wide spectrum of mediators and they have been implicated in several physiopathological conditions (e.g. allergic reactions and certain tumors). Pharmacologic agents that modulate the release of mediators from mast cells has helped to elucidate the biochemical mechanisms by which immunological and non-immunological stimuli activate these cells. Furthermore, the study of surface receptors and signaling pathways associated with mast cell activation revealed novel pharmacologic targets. Thus, the development of pharmacologic agents based on this new wave of knowledge holds promise for the treatment of several mast cell-mediated disorders.
    Current Opinion in Pharmacology 08/2014; 17:45–57. · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smallpox vaccine based on live, replicating vaccinia virus (VACV) is associated with several potentially serious and deadly complications. Consequently, a new generation of vaccine based on non-replicating Modified vaccinia virus Ankara (MVA) has been under clinical development. MVA seems to induce good immune responses in blood tests, but it is impossible to test its efficacy in vivo in human. One of the serious complications of the replicating vaccine is eczema vaccinatum (EV) occurring in individuals with atopic dermatitis (AD), thus excluding them from all preventive vaccination schemes. In this study, we first characterized and compared development of eczema vaccinatum in different mouse strains. Nc/Nga, Balb/c and C57Bl/6J mice were epicutaneously sensitized with ovalbumin (OVA) or saline control to induce signs of atopic dermatitis and subsequently trans-dermally (t.d.) immunized with VACV strain Western Reserve (WR). Large primary lesions occurred in both mock- and OVA-sensitized Nc/Nga mice, while they remained small in Balb/c and C57Bl/6J mice. Satellite lesions developed in both mock- and OVA-sensitized Nc/Nga and in OVA-sensitized Balb/c mice with the rate 40-50%. Presence of mastocytes and eosinophils was the highest in Nc/Nga mice. Consequently, we have chosen Nc/Nga mice as a model of AD/EV and tested efficacy of MVA and Dryvax vaccinations against a lethal intra-nasal (i.n.) challenge with WR, the surrogate of smallpox. Inoculation of MVA intra-muscularly (i.m.) or t.d. resulted in no lesions, while inoculation of Dryvax t.d. yielded large primary and many satellite lesions similar to WR. Eighty three and 92% of mice vaccinated with a single dose of MVA i.m. or t.d., respectively, survived a lethal i.n. challenge with WR without any serious illness, while all Dryvax-vaccinated animals survived. This is the first formal prove of protective immunity against a lethal poxvirus challenge induced by vaccination with MVA in an atopic organism.
    PLoS ONE 12/2014; 9(12):e114374. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atopic dermatitis (AD) is a chronic and relapsing skin disease with severe eczematous lesions. Long-term topical corticosteroid treatment can induce skin atrophy, hypopigmentation and transepidermal water loss (TEWL) increase. A new treatment approach was needed to reduce the risk by dermal targeting. For this purpose, Betamethasone valerate (BMV)/Diflucortolone valerate (DFV)-loaded liposomes (220–350 nm) were prepared and incorporated into chitosan gel to obtain adequate viscosity (∼13 000 cps). Drugs were localized in stratum corneum + epidermis of rat skin in ex-vivo permeation studies. The toxicity was assessed on human fibroblast cells. In point of in-vivo studies, pharmacodynamic responses, treatment efficacy and skin irritation were evaluated and compared with previously prepared nanoparticles. Liposome/nanoparticle in gel formulations produced higher paw edema inhibition in rats with respect to the commercial cream. Similar skin blanching effect with commercial creams was obtained via liposome in gels although they contain 10 times less drug. Dermatological scoring results, prognostic histological parameters and suppression of mast cell numbers showed higher treatment efficiency of liposome/nanoparticle in gel formulations in AD-induced rats. TEWL and erythema measurements confirmed these results. Overview of obtained results showed that liposomes might be an effective and safe carrier for corticosteroids in skin disease treatment.
    Drug Delivery 09/2014; · 2.20 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
May 20, 2014