Air bubbles and air-hydrate crystals in the Vostok ice core

Source: OAI

ABSTRACT International Symposium on Physics of Ice Core Records. Shikotsukohan, Hokkaido, Japan, September 14-17, 1998. The geometrical properties of air-bubble and air-hydrate ensembles in the 3310-m deep Vostok core and in other ice cores were studied. The principle results are the following: 1) the size and abundance of air bubbles in polar ice depend on the temperature and accumulation rate prevailing over the time of the snow-ice transformation, 2) the climate signal imposed on the bubble properties at pore close-off is only slightly modified in the course of the bubble-hydrate transition (500–1250 m at present time at Vostok) and in the first, transient, phase of air-hydrate crystal growth (1150–1500 m); as a consequence, the last four glacial-interglacial cycles are resolved in variations of the number and size of air inclusions along the Vostok ice core, and 3) the air-bubble and air-hydrate records from polar ice cores can provide an independent experimental constraint on the temperature-accumulation relations in the past.

  • Journal of Geophysical Research Atmospheres 01/2006; 111. DOI:10.1029/2006JC003488 · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When snow falls on glaciers or ice sheets, it persists for many tens, hundreds and sometimes thousands of years before becoming ice. The granular material in between fresh snow and glacial ice is known as firn and is generally 50 to 100 m thick over polar ice sheets. The compaction mechanism of firn into ice (called densification) has important glaciological ramifications in determination of ice sheet stability and related sea level rise effects via remote sensing altimetry. Firn densification is also important for correctly interpreting ice core paleoclimate records, especially those analyzing gases trapped in air bubbles within the glacial ice. Densification is thought to depend strongly on microstructure: the sizes, shapes, orientations and inter-particle bonds of the ice grains that make up polar firn. Microstructure-dependent densification is poorly understood and occurs in the region where two-thirds of the overall densification takes place. This work focuses on developing non-destructive methods for simultaneously evaluating changes in both the bulk density and microstructure of polar firn to better understand structure- dependent densification processes. The first method is an automated density gauge which uses gamma-ray transmission methods to non-destructively produce high resolution (3.3 mm) and high precision (+/-4 kg m-3) density profiles of firn and ice cores. This instrument was used to collect a density profile for the first 160 m of the West Antarctic Ice Sheet Divide WDCO6A deep ice core. The second method involves optical scattering measurements on firn and ice cores to determine the important microstructural parameters of ice grain and air bubble size and air-ice interface surface area. These measurements are modeled using both Monte Carlo radiative transfer and ray-tracing geometric optics methods, and are then tested against experiment using digital photography of the WDC06A core. Combining the results of both bulk density and optical scattering measurements for the same core reveals that microstructure-dependent densification did occur at this site and is readily detectable by purely photonic methods. This work lays the theoretical and experimental foundations for a novel, non-destructive and field deployable instrument for further study of structure-dependent firn densification.
  • [Show abstract] [Hide abstract]
    ABSTRACT: CO2 clathrate hydrate is a crystalline material composed of water cages around a CO2 molecule. CO2 gas hydrates are naturally occurring on Earth and are a likely phase on Mars as well as other cold planetary bodies. CO2 hydrates have minor effects on terrestrial atmospheric composition, but may be a major reservoir for greenhouse gases on Mars. In this study, CO2 hydrate formation and dissociation rates were measured experimentally on ultrapure and CO2 infused water ice (ice containing previously trapped CO2 gas bubbles). Overall, increasing pressure and temperature increased CO2 consumption rates, indicating enhanced hydrate formation rates. CO2 consumption and release rates both increased significantly in infused ice experiments as did the overall amount of CO2 consumed. CO2 bubbles formed during freezing of the infused ice likely provided more surface area for hydrate nucleation, increasing the rate of formation. Higher dissociation rates in infused ice experiments compared to ultrapure ice may be due to the higher concentration of hydrate originally formed in the bubble-filled samples. These results suggest that CO2 hydrate formation in natural, gas-rich ice occurs significantly faster than previously assumed. In addition, formation rates would be maximized and dissociation rates minimized at Mars equatorial conditions, perhaps leading to long-term storage of atmospheric CO2 in localized clathrate reservoirs.
    Icarus 05/2014; 234:45–52. DOI:10.1016/j.icarus.2014.01.037 · 2.84 Impact Factor


Available from