Article

Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation

Nature Precedings
Source: OAI

ABSTRACT The accurate description and analysis of protein-protein interfaces remains a challenging task. Traditional definitions, based on atomic contacts or changes in solvent accessibility, tend to over- or underpredict the interface itself and cannot discriminate active from less relevant parts.
We here extend a fast, parameter-free and purely geometric definition of protein interfaces and introduce the shelling order of Voronoi facets as a novel measure for an atom's depth inside the nterface. Our analysis of 54 protein-protein complexes reveals a strong correlation between Voronoi Shelling Order (VSO) and water dynamics. High Voronoi Shelling Order coincides with residues that were found shielded from bulk water fluctuations in a recent molecular dynamics study. Yet, VSO predicts such "dry" residues at dramatically reduced cost and without consideration of forcefields or dynamics.
More central interface positions are often also increasingly enriched for hydrophobic residues. Yet, this hydrophobic centering is not universal and does not mirror the far stronger geometric bias of water fluxes. The seemingly complex water dynamics at protein interfaces appears thus largely controlled by geometry. Sequence analysis supports the functional relevance of both dry residues and residues with high VSO, both of which tend to be more conserved. However, upon closer inspection, the spatial distribution of conservation argues against the arbitrary dissection into core or rim and thus refines previous results. Voronoi Shelling Order reveals clear geometric patterns in protein interface composition, function and dynamics and facilitates the comparative analysis of protein-protein interactions.

0 Bookmarks
 · 
51 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently a simple formalism was proposed for a quantitative analysis of interatomic voids inside a solute molecule and in the surrounding solvent. It is based on the Voronoi-Delaunay tessellation of structures, obtained in molecular simulations: successive Voronoi shells are constructed, starting from the interface between the solute molecule and the solvent, and continuing to the outside (into the solvent) as well as into the interior of the molecule. Similarly, successive Delaunay shells, consisting of Delaunay simplexes, can also be constructed. This technique can be applied to interpret volumetric data, obtained, for example, in studies of proteins in aqueous solution. In particular, it allows replacing qualitatively and descriptively introduced properties by strictly defined quantities, such as the thermal volume, by the boundary voids. The extension and the temperature behavior of the boundary region, its structure and composition are discussed in detail, using the example of a molecular dynamics model of an aqueous solution of the human amyloid polypeptide, hIAPP. We show that the impact of the solute on the local density of the solvent is short ranged, limited to the first Delaunay and the first Voronoi shell around the solute. The extra void volume, created in the boundary region between solute and solvent, determines the magnitude and the temperature dependence of the apparent volume of the solute molecule.
    Biophysical chemistry. 05/2014; 192C:1-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple formalism is proposed for a quantitative analysis of interatomic voids inside and outside a solute molecule in solution. It can be applied for the interpretation of volumetric data, obtained in studies of protein folding and unfolding in water. In particular, it helps to divide the partial molar volume of the solute into several components. The method is based on the Voronoi-Delaunay tessellation of molecular-dynamic models of solutions. It is suggested to select successive Voronoi shells, starting from the interface between the solute molecule and the solvent, and continuing to the outside (into the solvent) as well as into the inner of the molecule. Similarly, successive Delaunay layers, consisting of Delaunay simplexes, can also be constructed. Geometrical properties of the selected shells and layers are discussed. The temperature behavior of inner, boundary and outer shells is discussed by the example of a molecular-dynamic model of an aqueous solution of the polypeptide hIAPP.
    Transactions on Computational Science XX, 01/2013: pages 56-71; Springer Berlin Heidelberg.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple formalism is proposed for a quantitative analysis of interatomic voids inside and outside of a molecule in solution. It can be applied for the interpretation of volumetric data, obtained in studies of protein folding in water. The method is based on the Voronoi-Delaunay tessellation of molecular-dynamic models of solutions. It is suggested to select successive Voronoi shells, starting from the interface between the solute molecule and the solvent, and continuing to the outside (into the solvent) as well as into the inner of the molecule. Similarly, successive Delaunay layers, consisting of Delaunay simplexes, can also be calculated. Geometrical properties of the selected shells and layers are discussed. The behavior of inner and outer voids is discussed by the example of a molecular-dynamic model of an aqueous solution of the polypeptide hIAPP.
    Voronoi Diagrams in Science and Engineering (ISVD), 2012 Ninth International Symposium on; 01/2012

Full-text (2 Sources)

Download
11 Downloads
Available from
May 21, 2014