On the adaptive DVB-S2 physical layer: design and performance

ARCES, Bologna Univ., Italy
IEEE Wireless Communications (Impact Factor: 3.74). 01/2006; DOI: 10.1109/MWC.2005.1561946
Source: IEEE Xplore

ABSTRACT The successful DVB standard has now evolved into the DVB-S2 standard, which promises to bring very significant capacity gains. The main DVB-S2 feature is its adaptive air interface, where coding and modulation techniques are varied flexibly to maximize performance and coverage. This article addresses the design of the entire DVB-S2 communication chain, considering practical algorithms for coding, modulation, predistortion, carrier and SNR estimation, frame synchronization, and data recovery. The design complexity is exacerbated by the fact that DVB-S2 foresees 28 different coding/modulation pairs, demanding specific optimization and variable frame length. The performance achieved considering all possible impairments is compared to the ideal performance achievable in the Gaussian channel in terms of integral degradation, which ranges from 0.4 to 2,5 dB in going from QPSK to 32-APSK.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, the SNR estimation error of Decision Directed SNR estimation method in AWGN is investigated, which uses samples received in reference decision region. In communication system receiver, when SNR estimation scheme using error vectors between ideal sample points and received sample points of reference region is adopted, the samples contain incorrectly received samples due to AWGN. Consequently, the mean of estimated reference constellation point is shifted and Decision Directed SNR estimation is inaccurately performed. These effects are explained by modified probability density function and difference between actual SNR and estimated SNR is theoretically derived and quantatively analyzed. It is proved that SNR estimation error obtained through computer simulation is matched up with derived one, and SNR estimation performance is enhanced significantly by adopting suggested correction scheme.
    The Journal of Korea Navigation Institute. 01/2012; 16(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current DVB-S2 standard specifies the use of constant energy level pilots for receiver synchronization and equalization algorithms. However, these are unsuitable for APSK modulations due to the nonlinear response of the satellite power amplifier. In this paper, we investigate the performance of two low-complexity techniques for nonlinear compensation in DVB-S2 systems, i.e. static predistortion and cluster based sequence equalizer (CBSE). We also propose how multilevel pilot structures, matched to each technique, can be used for carrier recovery. Simulation results are presented in terms of total degradation wherein both techniques are shown to achieve a significant improvement over the conventional system.
    Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC), 2012 6th; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the channel-varying environment, it is very important to estimate the signal to noise ratio(SNR) of received signal and to transmit the signal effectively for the modern communication system. The performance of existing non-data-aided (NDA) SNR estimation methods are substantially degraded for high level modulation scheme such as M-ary APSK or QAM. In this paper, we propose a SNR estimation method which uses zero point auto-correlation of received signal per block and auto-/cross- correlation of decision feedback signal in OFDM system. Proposed method can be studied into two Types; Type 1 can estimate SNR by zero point auto-correlation of decision feedback signal based on the second moment property. Type 2 uses both zero point auto-correlation and cross-correlation based on the fourth moment property. In block-by-block reception of OFDM system, these two SNR estimation methods can be possible for the practical implementation due to correlation based the estimation method and they show more stable estimation performance than the previous SNR estimation methods. Also, we mathematically derive the SNR estimation expression according to computational difference of auto-/cross-correlation. Finally, Monte Carlo simulations are used to verify the proposed method.
    The Journal of Korean Institute of Electromagnetic Engineering and Science. 01/2010; 21(9).

Full-text (2 Sources)

Available from
May 19, 2014