Article

Silicon nitride cantilevers with oxidation-sharpened silicon tips for atomic force microscopy

Edward L. Ginzton Lab., Stanford Univ., CA
Journal of Microelectromechanical Systems (Impact Factor: 1.92). 09/2002; DOI: 10.1109/JMEMS.2002.800924
Source: IEEE Xplore

ABSTRACT High-resolution atomic force microscopy (AFM) of soft or fragile samples requires a cantilever with a low spring constant and a sharp tip. We have developed a novel process for making such cantilevers from silicon nitride with oxidation-sharpened silicon tips. First, we made and sharpened silicon tips on a silicon wafer. Next, we deposited a thin film of silicon nitride over the tips and etched it to define nitride cantilevers and to remove it from the tips so that they protruded through the cantilevers. Finally, we etched from the back side to release the cantilevers by removing the silicon substrate. We characterized the resulting cantilevers by imaging them with a scanning electron microscope, by measuring their thermal noise spectra, and by using them to image a test sample in contact mode. A representative cantilever had a spring constant of ∼0.06 N/m, and the tip had a radius of 9.2 nm and a cone angle of 36° over 3 μm of tip length. These cantilevers are capable of higher resolution imaging than commercially available nitride cantilevers with oxidation-sharpened nitride tips, and they are especially useful for imaging large vertical features.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thin and short cantilevers possess both a low force constant and a high resonance frequency, thus are highly desirable for atomic force microscope (AFM) imaging and force measurement. In this work, small silicon (Si) cantilevers integrating with a Si tip were fabricated from silicon-on-oxide (SOI) wafers that were used for reducing the variation of thickness of the cantilevers. Our fabrication process provided SOI chips containing 40 silicon cantilevers integrating with an ultra-sharp Si tip. We showed that the resolution of images obtained with these tips was much higher than those obtained with the commercial tips, while the force constants were much less, that is, more suitable for imaging soft samples. The availability of such SOI chips greatly facilitates large scale modification of the surfaces of the silicon cantilever tips with a monolayer of oligo(ethylene glycol) derivatives that resist the non-specific interactions with proteins, rendering them most suitable for imaging and measurement of biological samples.
    Sensors and Actuators A-physical - SENSOR ACTUATOR A-PHYS. 01/2006; 126(2):369-374.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Continued advances in microelectromechanical systems (MEMS) technology have led to development of a multitude of new sensors and their corresponding advanced applications. Great many of these sensors (e.g., microgyroscopes, accelerometers, biological, chemical, security, medical, etc.) rely on either sensing elements or elastic suspensions that resonate. Regardless of their applications, sensors are always designed to provide the most exact responses to the signals they are developed to detect and/or monitor. One way to quantify this exactness is to use the Quality factor (Q-factor). MEMS sensors are typically fabricated out of materials that are mechanically sound at the microscale, but can be relatively poor electrical conductors. For this reason, areas of MEMS are coated with various thin metal films to provide electrical pathways. These films, however, adversely alter resonant properties of a device. To facilitate our study, microcantilever configurations were selected to test influence that thin metal films have on resonators. This paper reviews a theoretical analysis of the effect that thermoelastic internal friction has on the Q-factor of microscale resonators and shows that the internal friction relating to TED is a fundamental damping mechanism in determination of quality of high-Q resonators over a range of operating conditions. Using silicon microcantilevers coated with aluminum films from 5 nm to 30 nm thick, on one as well as both sides, Q-factors were experimentally determined using the ring-down method. From the ring-down curve, the Q-factor of each microcantilever was determined. Experimental results show that as thickness of the aluminum film increases, Q-factor of the device decreases. Comparison of analytical and experimental results indicates good correlation, well within the limits based on uncertainty analysis. In addition, preliminary results also show a significant temperature dependence of the Q-factor of aluminum coated microcantilevers.
    Experimental Mechanics 01/2014; · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work presents the results obtained by mean of a promising procedure for silicon-based MEMS fabrication named hydrogen ion implantation–porous silicon (HI–PS) technique. On this technique HI followed by adequate thermal annealing constitutes an effective “mask” for subsequent PS formation by usual anodization process [Sens. Actuators B 76 (2001) 343]. As this formation is isotropic under masks borders, PS can be used as sacrificial layer in order to obtain silicon microstructures as sharp tips (diameter around 0.1 μm and height around 45 μm) and thin membranes (around 1 μm thick). Additionally, it is shown that membranes thickness can be controlled by thermal annealing time, so thickness up to 4 μm can be obtained.
    Sensors and Actuators A Physical 09/2004; 115(s 2–3):608–616. · 1.94 Impact Factor

Full-text

Download
1 Download