Article

# A Review on Joint Models in Biometrical Research

Journal of statistical theory and practice 12/2009; DOI:10.1080/15598608.2009.10411965

Source: OAI

- [show abstract] [hide abstract]

**ABSTRACT:**Joint longitudinal-survival models are useful when repeated measures and event time data are available and possibly associated. The application of this joint model in aging research is relatively rare, albeit particularly useful, when there is the potential for nonrandom dropout. In this article we illustrate the method and discuss some issues that may arise when fitting joint models of this type. Using prose recall scores from the Swedish OCTO-Twin Longitudinal Study of Aging, we fitted a joint longitudinal-survival model to investigate the association between risk of mortality and individual differences in rates of change in memory. A model describing change in memory scores as following an accelerating decline trajectory and a Weibull survival model was identified as the best fitting. This model adjusted for random effects representing individual variation in initial memory performance and change in rate of decline as linking terms between the longitudinal and survival models. Memory performance and change in rate of memory decline were significant predictors of proximity to death. Joint longitudinal-survival models permit researchers to gain a better understanding of the association between change functions and risk of particular events, such as disease diagnosis or death. Careful consideration of computational issues may be required because of the complexities of joint modeling methodologies.GeroPsych. 12/2011; 24(4):177-185.

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.