A Review on Joint Models in Biometrical Research

Journal of statistical theory and practice 12/2009; DOI: 10.1080/15598608.2009.10411965
Source: OAI

ABSTRACT In some fields of biometrical research joint modelling of longitudinal measures and event time data has become very popular. This article reviews the work in that area of recent fruitful research by classifying approaches on joint models in three categories: approaches with focus on serial trends, approaches with focus on event time data and approaches with equal focus on both outcomes. Typically longitudinal measures and event time data are modelled jointly by introducing shared random effects or by considering conditional distributions together with marginal distributions. We present the approaches in an uniform nomenclature, comment on sub-models applied to longitudinal measures and event time data outcomes individually and exemplify applications in biometrical research.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Joint longitudinal-survival models are useful when repeated measures and event time data are available and possibly associated. The application of this joint model in aging research is relatively rare, albeit particularly useful, when there is the potential for nonrandom dropout. In this article we illustrate the method and discuss some issues that may arise when fitting joint models of this type. Using prose recall scores from the Swedish OCTO-Twin Longitudinal Study of Aging, we fitted a joint longitudinal-survival model to investigate the association between risk of mortality and individual differences in rates of change in memory. A model describing change in memory scores as following an accelerating decline trajectory and a Weibull survival model was identified as the best fitting. This model adjusted for random effects representing individual variation in initial memory performance and change in rate of decline as linking terms between the longitudinal and survival models. Memory performance and change in rate of memory decline were significant predictors of proximity to death. Joint longitudinal-survival models permit researchers to gain a better understanding of the association between change functions and risk of particular events, such as disease diagnosis or death. Careful consideration of computational issues may be required because of the complexities of joint modeling methodologies.
    GeroPsych. 12/2011; 24(4):177-185.

Full-text (2 Sources)

Available from
Aug 25, 2014