Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system

Cornell University, Итак, New York, United States
IEEE Photonics Technology Letters (Impact Factor: 2.18). 12/2003; 15(11):1636 - 1638. DOI: 10.1109/LPT.2003.818664
Source: IEEE Xplore

ABSTRACT The impact of self-phase modulation-induced nonlinear phase noise in a 10-Gb/s return-to-zero differential phase-shift keying system is studied by numerical simulation. We show that the simple differential phase Q method based on the Gaussian approximation for the phase noise provides a relatively good estimate of the nonlinear penalty.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical fiber transport networks have been evolving rapidly to meet the demands of today's telecommunications such as unprecedented transmission capacity and reach. Fiber nonlinearity becomes an important issue as the transmission capacity and reach increase, and appropriate management of fiber nonlinearity is necessary. We review the progresses on some novel techniques for managing fiber nonlinearity in modern optical transmission systems. Advanced optical modulation techniques that allow optical signals to have high tolerance to both inter-channel and intra-channel nonlinear effects will be discussed. In particular, differential phase-shift keying (DPSK) and its impact in high-speed dense wavelength-division-multiplexing (DWDM) systems will be described. Novel dispersion management methods that suppress nonlinear effects will also be reviewed, particularly in the context of scalable and transparent optical transport networks having mixed 10 Gb/s and 40 Gb/s DWDM channels and optical add/drop multipliers (OADM). Electronic techniques that compensate for fiber nonlinearity at the transmitter side and the receiver side will be briefly discussed.
    Optics East 2006; 10/2006
  • [Show abstract] [Hide abstract]
    ABSTRACT: The performance evaluation of optical differential quadrature phase-shift keying (DQPSK) systems through numerical simulation using a Gaussian approach (GA) for the equivalent differential phase (EDP) statistics is analyzed. It is shown that the GA describes quite accurately the probability density function (PDF) of EDP for a large range of DQPSK receiver (RX) imperfections. A semi-analytical simulation method (SASM) for bit error probability (BEP) evaluation based on the GA for the EDP is derived, proving to be quite accurate in presence of RX imperfections. The SASM takes into account the signal-noise beat variance dependence on signal waveform distortion and arbitrary optical and electrical filtering frequency responses. Closed-form expressions for the mean and standard deviation of EDP are derived which allows evaluating the DQPSK system performance in a quite time-efficient manner. Discrepancies not exceeding 0.1 dB on the optical SNR penalty estimated by the SASM for a BEP of $10^{-4}$ when compared with Monte Carlo simulation are observed for the majority of the acceptable RX imperfections. Only the time-misalignment of the signals at the balanced detector input leads to higher discrepancies but not exceeding 0.3 dB even for considerable time-misalignment.
    Journal of Lightwave Technology 06/2010; 28(12). DOI:10.1109/JLT.2010.2046621 · 2.86 Impact Factor
  • Source

Full-text (2 Sources)

Available from
May 21, 2014