Article

Optimal multistage scheduling of PMU placement: An ILP approach

Indian Inst. of Technol., Mumbai
IEEE Transactions on Power Delivery (Impact Factor: 1.66). 11/2008; 23(4):1812 - 1820. DOI: 10.1109/TPWRD.2008.919046
Source: IEEE Xplore

ABSTRACT This paper addresses various aspects of optimal phasor measurement unit (PMU) placement problem. We propose a procedure for multistaging of PMU placement in a given time horizon using an integer linear programming (ILP) framework. Hitherto, modeling of zero injection constraints had been a challenge due to the intrinsic nonlinearity associated with it. We show that zero injection constraints can also be modeled as linear constraints in an ILP framework. Minimum PMU placement problem has multiple solutions. We propose two indices, viz, BOI and SORI, to further rank these multiple solutions, where BOI is bus observability index giving a measure of number of PMUs observing a given bus and SORI is system observability redundancy index giving sum of all BOI for a system. Results on IEEE 118 bus system have been presented. Results indicate that: (1) optimal phasing of PMUs can be computed efficiently; (2) proposed method of modeling zero injection constraints improve computational performance; and (3) BOI and SORI help in improving the quality of PMU placement.

2 Followers
 · 
242 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microgrids include distributed energy resources, controllable loads, and storage devices, and they can be classified into AC and DC types, depending on the characteristics of the supply voltage. In this paper, an optimal control strategy for a DC microgrid is proposed, and the strategy is aimed at minimizing the daily total energy costs. The DC micro grid can include non-dispatchable generation units (such as photovoltaic power generation) and dispatchable generation units, energy storage systems (batteries), and controllable/not controllable loads. The control strategy is based on a two-step procedure, i.e., (1) the implementation of one day-ahead scheduling and (2) a very short-time predictive control. The day-ahead scheduling is formulated using integer linear programming methodology and is aimed at achieving the optimal scheduling of controllable loads. The very short-time predictive control is based on the solution of a non-linear, multi-period, optimization problem and is aimed at achieving the real-time optimal charging/discharging profile of storage powers and the real-time optimal profile of powers of dispatchable generators thereby minimizing the cost of total daily energy. For both procedures, optimization models were formulated and solved, including technical constraints that guaranteed an adequate lifetime of the storage system. Case studies relative to a DC microgrid obtained by a modification of the actual structure of the electrical power plant of an Italian industrial facility were investigated in order to show the feasibility and the effectiveness of the proposed approach.
    International Journal of Electrical Power & Energy Systems 05/2015; 67:25-38. DOI:10.1016/j.ijepes.2014.11.003 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper explored a novel method for strategic monitoring of a power system to schematically monitor power system variables that are sensitive to transients. The characteristics of a fully developed transient or power swing increase frequency slip rates, generator pole slips, rotor out-of-step etc. whose effects lead to loss of synchronism of coherent generators in a power system. When these occur, the resulting remedy could be load shedding schemes, generator tripping or controlled islanding. Failure to achieve any of these might lead to geographically extensive blackouts and/or the damage of auxiliary power system equipment.This paper looked at the Wide Area Monitoring (WAM) principle, consisting of collection and pre-processing of field data, using Phasor Measurement Units (PMUs). A data mining exercise was performed purposing to identify strategic positions for PMU placement using the Classification and Regression Trees (CART) algorithm. The logic of CART was therefore also discussed.The proposition of strategic PMU placement as implied by the Decision Tree (DT) model acknowledges that a few PMUs in the power system network are capable of achievingWide Area Protection(WAP)functions.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phasor measurement units (PMUs) are rapidly being deployed in electric power networks across the globe. Wide-area measurement system (WAMS), which builds upon PMUs and fast communication links, is consequently emerging as an advanced monitoring and control infrastructure. Rapid adaptation of such devices and technologies has led the researchers to investigate multitude of challenges and pursue opportunities in synchrophasor measurement technology, PMU structural design, PMU placement, miscellaneous applications of PMU from local perspectives, and various WAMS functionalities from the system perspective. Relevant research articles appeared in the IEEE and IET publications from 1983 through 2014 are rigorously surveyed in this paper to represent a panorama of research progress lines. This bibliography will aid academic researchers and practicing engineers in adopting appropriate topics and will stimulate utilities toward development and implementation of software packages.
    01/2015; 2:1-1. DOI:10.1109/ACCESS.2015.2389659