A Step Toward Optimization of Cancer Therapeutics [Chronobiological Investigations]

Inst. Nat. de Recherche en Inf. et en Autom., Rocquencourt
IEEE Engineering in Medicine and Biology Magazine (Impact Factor: 26.3). 02/2008; 27(1):20 - 24. DOI: 10.1109/MEMB.2007.907363
Source: IEEE Xplore


An integrative physiology model has been designed, which takes into account the cell proliferation at the level of a population of cells by age-structured partial differential equations (PDEs), its control by cell cycle proteins, and the control of these molecular mechanisms by the circadian system, designed as a network of coupled oscillators also described by ODEs. Cancer growth and response to therapy by anticancer drugs have been shown to be dependent on circadian clock inputs. This multiscale modeling framework will provide clinicians with a theoretical tool to bridge the gap between the pharmaceutical clinical control level and the molecular pharmacological hidden level of drug action.

Download full-text


Available from: Jean Clairambault, Nov 14, 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The circadian timing system (CTS) controls drug metabolism and cellular proliferation over the 24 hour day through molecular clocks in each cell. These cellular clocks are coordinated by a hypothalamic pacemaker, the suprachiasmatic nuclei, that generates or controls circadian physiology. The CTS plays a role in cancer processes and their treatments through the downregulation of malignant growth and the generation of large and predictable 24 hour changes in toxicity and efficacy of anti-cancer drugs. The tight interactions between circadian clocks, cell division cycle and pharmacology pathways have supported sinusoidal circadian-based delivery of cancer treatments. Such chronotherapeutics have been mostly implemented in patients with metastatic colorectal cancer, the second most common cause of death from cancer. Stochastic and deterministic models of the interactions between circadian clock, cell cycle and pharmacology confirmed the poor therapeutic value of both constant-rate and wrongly timed chronomodulated infusions. An automaton model for the cell cycle revealed the critical roles of variability in circadian entrainment and cell cycle phase durations in healthy tissues and tumours for the success of properly timed circadian delivery schedules. The models showed that additional therapeutic strategy further sets the constraints for the identification of the most effective chronomodulated schedules.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 10/2008; 366(1880):3575-98. DOI:10.1098/rsta.2008.0114 · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review aims at presenting a synoptic, if not exhaustive, point of view on some of the problems encountered by biologists and physicians who deal with natural cell proliferation and disruptions of its physiological control in cancer disease. It also aims at suggesting how mathematicians are naturally challenged by these questions and how they might help, not only biologists, to deal theoretically with biological complexity, but also physicians to optimise therapeutics, on which last point the focus will be set here. To this purpose, mathematical modelling should represent proliferating cell population dynamics with natural built-in control targets (which implies modelling the cell division cycle), together with the distribution of drugs in the organism and their molecular actions on different targets at the cell level on proliferation, i.e., molecular pharmacokinetics-pharmacodynamics of antiproliferative drugs. This should make possible optimal control of drug delivery with constraints to be determined according to the main pharmacological issues encountered in the clinic: unwanted toxic side-effects, occurrence of drug resistance. Mathematical modelling should also take into account physiological determinants of cell and tissue proliferation, such as intervention of the immune system, circadian control on cell cycle checkpoint proteins, and activity of intracellular drug processing enzymes together with individual variations in the activities of these proteins (genetic polymorphism). Taking these points into account will add to the rich scenery of normal or disrupted cell and tissue regulations, and their corrections by drugs, a natural environmental, whole body physiological, frame. It is necessary indeed to consider such a framework if one wants to eventually be actually helpful to clinicians who routinely treat by combinations of drugs living Humans with their complex whole body regulations, often dependent on genotypic variations, and not isolated cells or tissues.
    Mathematical Modelling of Natural Phenomena 01/2009; 4(3):12-67. DOI:10.1051/mmnp/20094302 · 0.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiologically based modelling of pharmacodynamics/toxicodynamics requires an a priori knowledge on the underlying mechanisms causing toxicity or causing the disease. In the context of cancer, the objective of the expert meeting was to discuss the molecular understanding of the disease, modelling approaches used so far to describe the process, preclinical models of cancer treatment and to evaluate modelling approaches developed based on improved knowledge. Molecular events in cancerogenesis can be detected using 'omics' technology, a tool applied in experimental carcinogenesis, but also for diagnostics and prognosis. The molecular understanding forms the basis for new drugs, for example targeting protein kinases specifically expressed in cancer. At present, empirical preclinical models of tumour growth are in great use as the development of physiological models is cost and resource intensive. Although a major challenge in PKPD modelling in oncology patients is the complexity of the system, based in part on preclinical models, successful models have been constructed describing the mechanism of action and providing a tool to establish levels of biomarker associated with efficacy and assisting in defining biologically effective dose range selection for first dose in man. To follow the concentration in the tumour compartment enables to link kinetics and dynamics. In order to obtain a reliable model of tumour growth dynamics and drug effects, specific aspects of the modelling of the concentration-effect relationship in cancer treatment that need to be accounted for include: the physiological/circadian rhythms of the cell cycle; the treatment with combinations and the need to optimally choose appropriate combinations of the multiple agents to study; and the schedule dependence of the response in the clinical situation.
    European journal of cancer (Oxford, England: 1990) 11/2009; 46(1):21-32. DOI:10.1016/j.ejca.2009.10.011 · 5.42 Impact Factor
Show more