A Reversible Tracer Analysis Approach to the Study of Effective Dopamine Turnover

University of British Columbia/TRIUMF, Vancouver, British Columbia, Canada.
Journal of Cerebral Blood Flow & Metabolism (Impact Factor: 5.34). 05/2001; DOI: 10.1097/00004647-200104000-00015
Source: OAI

ABSTRACT Changes in dopamine turnover resulting from disease states such as Parkinson's disease may be reflected in corresponding changes in the kinetics of the positron emission tomographic tracer [(18)F]fluorodopa. The authors had previously refined the conventional irreversible-tracer graphical approach to determine both the uptake rate constant K(i) and the rate constant kloss that describes the slow loss of the trapped kinetic component. Because these parameters change in the opposite sense with disease, their ratios may be more powerfully discriminating than either one alone. The ratio k(loss)/K(i) is indicative of effective dopamine turnover. Its inverse, K(i)/k(loss), can be interpreted as the effective distribution volume (EDV) of the specific uptake compartment referred to the fluorodopa concentration in plasma. Here the authors present a new approach to the estimation of EDV based on reversible-tracer graphical methods. When implemented with a plasma input function, the method evaluates EDV directly. When implemented with a tissue input function, the outcome is proportional to the ratio of the distribution volumes of the specific uptake and precursor compartments. Comparison of the new and previous approaches strongly validates this alternative approach to the study of effective dopamine turnover.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Functional imaging may be particularly helpful for the assessment of levodopa (l-dopa) response and long-term complications of therapy in Parkinson's disease. Radiotracer imaging allows the quantitative determination of regional changes in blood flow and glucose metabolism, as well as alterations in brain connectivity and network activation and changes in dopamine receptors, non-dopaminergic neurotransmitter systems, and to a lesser extent, signaling pathways downstream to dopamine receptors. The focus of the present article, however, is the application of positron emission tomography (PET) to study the central pharmacokinetics of l-dopa. Radioligands with limited affinity for the dopamine D2 receptor are sensitive to changes in the levels of synaptic dopamine and can accordingly provide helpful insights into the magnitude and time course of dopamine release after l-dopa. Prolonged fluorodopa PET scans can be used to estimate the rate of dopamine turnover. Studies performed with these techniques have demonstrated increased dopamine turnover and increased but shorter duration release of dopamine after l-dopa as Parkinson's disease (PD) progresses, increased release of dopamine in patients with l-dopa–induced dyskinesia, and that aberrant patterns of dopamine release may actually predict the future development of motor fluctuations. Taken together, the studies provide in vivo validation for the hypothesis that pulsatile stimulation of dopamine receptors plays a critical role in the emergence of long-term motor complications of therapy. Similar approaches can be used to study the non-motor complications of PD and its treatment. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 10/2014; 30(1). DOI:10.1002/mds.26046 · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we proposed a dynamic multi-bed PET imaging and analysis framework enabling clinically feasible whole-body parametric imaging. The standard Patlak linear graphical analysis allows for efficient modeling of whole-body tracer kinetics by directly estimating the uptake rate constant K i and blood distribution volume V, based on a common two-compartment kinetic model. However, this model does not account for reversible uptake (e.g. dephosphorylation in FDG), thus underestimating K i in this case, a finding observed in a number of published FDG or similar tracer studies. We propose a novel generalized PET parametric imaging framework enabling truly quantitative whole-body Patlak imaging including in regions exhibiting reversibility. For this purpose: a) an extended non-linear Patlak model has been utilized, enriched with the net efflux rate constant k loss , (b) a basis function method has been applied to linearize the estimation process through a computationally efficient algorithm, and (c) a hybrid K i imaging technique is introduced based on the Patlak correlation-coefficient to enhance robustness to noise. Our evaluation included both simulated and real subject clinical studies. A set of published kinetic parameter values and the XCAT phantom were employed to generate realistic simulation data for 2 dynamic 7-bed acquisition protocols (0-45min and 30-90min post-injection). Quantitative analysis on the K i images suggests superior quantitative performance of the generalized Patlak in comparison to the standard Patlak imaging in both acquisitions, even when k loss is comparable to K i . In addition, validation on three dynamic whole-body patient datasets demonstrated clinical feasibility and increased focal uptake with potential for enhanced diagnosis and treatment response monitoring.
    IEEE Nuclear Science Symposium and Medical Imaging Conference, Seoul, S. Lorea; 10/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subtle cognitive and behavioral changes are common in early Parkinson's disease. The cause of these symptoms is probably multifactorial but may in part be related to extra-striatal dopamine levels. 6-[(18) F]-Fluoro-L-dopa (FDOPA) positron emission tomography has been widely used to quantify dopamine metabolism in the brain; the most frequently measured kinetic parameter is the tissue uptake rate constant, Ki. However, estimates of dopamine turnover, which also account for the small rate of FDOPA loss from areas of specific trapping, may be more sensitive than Ki for early disease-related changes in dopamine biosynthesis. The purpose of the present study was to compare effective distribution volume ratio (eDVR), a metric for dopamine turnover, to cognitive and behavioral measures in Parkinson's patients. We chose to focus the investigation on anterior cingulate cortex, which shows highest FDOPA uptake within frontal regions and has known roles in executive function. Fifteen non-demented early-stage PD patients were pretreated with carbidopa and tolcapone, a central catechol-O-methyl transferase (COMT) inhibitor, and then underwent extended imaging with FDOPA PET. Anterior cingulate eDVR was compared with composite scores for language, memory, and executive function measured by neuropsychological testing, and behavior change measured using two informant-based questionnaires, the Cambridge Behavioral Inventory and the Behavior Rating Inventory of Executive Function-Adult Version. Lower mean eDVR (thus higher dopamine turnover) in anterior cingulate cortex was related to lower (more impaired) behavior scores. We conclude that subtle changes in anterior cingulate dopamine metabolism may contribute to dysexecutive behaviors in Parkinson's disease.
    Brain Imaging and Behavior 12/2014; DOI:10.1007/s11682-014-9338-4 · 3.39 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014