Article
Average depths of electron penetration. II. Angular dependence and use to evaluate secondaryelectron yield by photons
Osaka Prefecture University, Sakai, Ōsaka, Japan
IEEE Transactions on Nuclear Science
(Impact Factor: 1.46).
08/1999;
46(4):910  914.
DOI: 10.1109/23.790702
Source: IEEE Xplore
Fulltext
Vadim Moskvin, Aug 11, 2013 Available from:
Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed.
The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual
current impact factor.
Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence
agreement may be applicable.
 References (7)

Cited In (0)

[Show abstract] [Hide abstract]
ABSTRACT: A mixed algorithm for Monte Carlo simulation of relativistic electron and positron transport in matter is described. Cross sections for the different interaction mechanisms are approximated by expressions that permit the generation of random tracks by using purely analytical methods. Hard elastic collisions, with scattering angle greater than a preselected cutoff value, and hard inelastic collisions and radiative events, with energy loss larger than given cutoff values, are simulated in detail. Soft interactions, with scattering angle or energy loss less than the corresponding cutoffs, are simulated by means of multiple scattering approaches. This algorithm handles lateral displacements correctly and completely avoids difficulties related with interface crossing. The simulation is shown to be stable under variations of the adopted cutoffs; these can be made quite large, thus speeding up the simulation considerably, without altering the results. The reliability of the algorithm is demonstrated through a comparison of simulation results with experimental data. Good agreement is found for electrons and positrons with kinetic energies down to a few keV.Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 05/1995; 100(1100):3146. DOI:10.1016/0168583X(95)003495 · 1.19 Impact Factor 
[Show abstract] [Hide abstract]
ABSTRACT: The average depth of electron penetration is introduced as the physical quantity useful in electron beam irradiation. It is defined as the average of the maximum depths on the trajectories of electrons passing through finite, semiinfinite or infinite medium. The relation between the transmission coefficient as a function of slab thickness and the distribution of the maximum depths is analyzed, and a semiempirical equation to calculate the average depth of electron penetration is given for 0.1 to 50MeV electrons incident on materials of atomic numbers from 4 to 92. It is shown that the quantity introduced is usable as the characteristic depths of energy and charge depositions in a target, and can possibly be generalized to the case of heterogeneous targets.IEEE Transactions on Nuclear Science 06/1998; 45(3):626  631. DOI:10.1109/23.682461 · 1.46 Impact Factor 
Article: An empirical relation for the transmission coefficient of electrons under oblique incidence
[Show abstract] [Hide abstract]
ABSTRACT: An empirical relation for the transmission coefficient of electrons impinging on aluminum absorbers is given as a function of absorber thickness x, incident energy T0, and angle of incidence θ. It has been formulated by incorporating the dependence upon θ in the empirical equation for the case of normal incidence reported previously by the present authors. Numerical constants in the relation have been determined through leastsquares fit to the data for T0 = 0.5−10 MeV generated by the Monte Carlo code of Berger and Seltzer. The rms absolute deviation, evaluated over θ = 0°−75°, of the relation from the Monte Carlo data is about 0.03 in the entire energy region considered.Nuclear Instruments and Methods 08/1976; 136(3):533536. DOI:10.1016/0029554X(76)903773