Article

Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer

Univ. of Mainz, Mainz
IEEE Transactions on Instrumentation and Measurement (Impact Factor: 1.71). 07/2008; DOI: 10.1109/TIM.2007.915148
Source: arXiv

ABSTRACT We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave packets. The sensitivity function is calculated in the case of a three-pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at the Laboratoire National de Metrologie et d'Essais-Systeme de References Temps-Espace. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers as well as by residual vibrations. We evaluate the performance that could be obtained with state-of-the-art quartz oscillators, as well as the impact of the residual phase noise of the phase-locked loop. Requirements on the level of vibrations are derived from the same formalism.

0 Bookmarks
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performances without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely the dead times between consecutive measurements.
    Applied Physics Letters 09/2014; 105(14). DOI:10.1063/1.4897358 · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Dick effect can be a limitation of the achievable frequency stability of a passive atomic frequency standard when the ancillary frequency source is only periodically sampled. Here we analyze the Dick effect for a pulsed vapor cell clock using coherent population trapping (CPT). Due to its specific interrogation process without atomic preparation nor detection outside of the Ramsey pulses, it exhibits an original shape of the sensitivity function to phase noise of the oscillator. Numerical calculations using a three-level atom model are successfully compared with measurements; an approximate formula of the sensitivity function is given as an easy-to-use tool. A comparison of our CPT clock sensitivity to phase noise with a clock of the same duty cycle using a two-level system reveals a higher sensitivity in the CPT case. The influence of a free-evolution time variation and of a detection duration lengthening on this sensitivity is studied. Finally this study permitted to choose an adapted quartz oscillator and allowed an improvement of the clock fractional frequency stability at the level of 3.2x10-13 at 1s
    IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 06/2014; 61(4). DOI:10.1109/TUFFC.2014.2945 · 1.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01–10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.
    Review of Scientific Instruments 09/2014; 85(9):093109-093109-7. DOI:10.1063/1.4895911 · 1.58 Impact Factor

Full-text (3 Sources)

Download
40 Downloads
Available from
Jun 1, 2014