Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer

Univ. of Mainz, Mainz
IEEE Transactions on Instrumentation and Measurement (Impact Factor: 1.71). 07/2008; DOI: 10.1109/TIM.2007.915148
Source: arXiv

ABSTRACT We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave packets. The sensitivity function is calculated in the case of a three-pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at the Laboratoire National de Metrologie et d'Essais-Systeme de References Temps-Espace. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers as well as by residual vibrations. We evaluate the performance that could be obtained with state-of-the-art quartz oscillators, as well as the impact of the residual phase noise of the phase-locked loop. Requirements on the level of vibrations are derived from the same formalism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual 85 Rb- 87 Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.
    Nuclear Physics B - Proceedings Supplements 01/2013; 243-244:203. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future.
    Sensors 01/2012; 12(5):6331-46. · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The STE-QUEST satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the Universality of Free Fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of Rb85 and Rb87. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the E\"otv\"os parameter of at least 2x10E-15. In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources.
    Classical and Quantum Gravity 01/2014; 31(11):115010. · 3.56 Impact Factor

Full-text (3 Sources)

Available from
Jun 1, 2014